用户名: 密码: 验证码:
Cardioprotective kinase signaling to subsarcolemmal and interfibrillar mitochondria is mediated by caveolar structures
详细信息    查看全文
文摘
The demonstration that caveolin-3 overexpression reduces myocardial ischemia/reperfusion injury and our own finding that multiprotein signaling complexes increase in mitochondria in association with caveolin-3 levels, led us to investigate the contribution of caveolae-driven extracellular signal-regulated kinases 1/2 (ERK1/2) on maintaining the function of cardiac mitochondrial subpopulations from reperfused hearts subjected to postconditioning (PostC). Rat hearts were isolated and subjected to ischemia/reperfusion and to PostC. Enhanced cardiac function, reduced infarct size and preserved ultrastructure of cardiomyocytes were associated with increased formation of caveolar structures, augmented levels of caveolin-3 and mitochondrial ERK1/2 activation in PostC hearts in both subsarcolemmal (SSM) and interfibrillar (IFM) subpopulations. Disruption of caveolae with methyl-β-cyclodextrin abolished cardioprotection in PostC hearts and diminished pho-ERK1/2 gold-labeling in both mitochondrial subpopulations in correlation with suppression of resistance to permeability transition pore opening. Also, differences between the mitochondrial subpopulations in the setting of PostC were evaluated. Caveolae disruption with methyl-β-cyclodextrin abolished the cardioprotective effect of postconditioning by inhibiting the interaction of ERK1/2 with mitochondria and promoted decline in mitochondrial function. SSM, which are particularly sensitive to reperfusion damage, take advantage of their location in cardiomyocyte boundary and benefit from the cardioprotective signaling driven by caveolae, avoiding injury propagation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700