用户名: 密码: 验证码:
New Landscape of Electron-Pair Bonding: Covalent, Ionic, and Charge-Shift Bonds
详细信息    查看全文
  • 关键词:AIM ; Bonding ; Charge ; shift bonding ; Covalent bonding ; Electron pairing ; Electronegativity ; ELF ; Ionic bonding ; Lewis structures ; Resonance energy ; Valence bond
  • 刊名:Structure & Bonding
  • 出版年:2016
  • 出版时间:2016
  • 年:2016
  • 卷:170
  • 期:1
  • 页码:169-211
  • 全文大小:1,040 KB
  • 参考文献:1.Shaik S (2007) J Comput Chem 28:51CrossRef
    2.Shaik S, Hiberty PC (2008) A chemist’s guide to valence bond theory. Wiley, Hoboken, pp 1–25
    3.Sini G, Maitre P, Hiberty PC, Shaik SS (1991) J Mol Struct (THEOCHEM) 229:163CrossRef
    4.Shaik S, Maitre P, Sini G, Hiberty PC (1992) J Am Chem Soc 114:7861CrossRef
    5.Lauvergnat DL, Hiberty PC, Danovich D, Shaik S (1996) J Phys Chem 100:5715CrossRef
    6.Shurki A, Hiberty PC, Shaik S (1999) J Am Chem Soc 121:822CrossRef
    7.Galbraith JM, Blank E, Shaik S, Hiberty PC (2000) Chem Eur J 6:2425CrossRef
    8.Lauvergnat D, Hiberty PC (1995) J Mol Struct (THEOCHEM) 338:283CrossRef
    9.Shaik S, Danovich D, Silvi B, Lauvergnat D, Hiberty PC (2005) Chem Eur J 11:6358CrossRef
    10.Zhang L, Ying F, Wu W, Hiberty PC, Shaik S (2009) Chem Eur J 15:2979CrossRef
    11.Wu W, Gu J, Song J, Shaik S, Hiberty PC (2009) Angew Chem Int Ed 48:1407CrossRef
    12.Shaik S, Danovich D, Wu W, Hiberty PC (2009) Nat Chem 1:443CrossRef
    13.Shaik S, Chen Z, Wu W, Stanger A, Danovich D, Hiberty PC (2009) ChemPhysChem 10:2658CrossRef
    14.Zhang H, Danovich D, Wu W, Braida B, Hiberty PC, Shaik S (2014) J Chem Theory Comput 10:2410CrossRef
    15.Anderson P, Petit A, Ho J, Mitoraj MP, Coote ML, Danovich D, Shaik S, Braïda B, Ess DH (2014) J Org Chem 79:9998CrossRef
    16.Silvi B, Savin A (1994) Nature 371:683CrossRef
    17.Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford
    18.Shaik S, Hiberty PC (2008) A chemist’s guide to valence bond theory. Wiley, Hoboken, ch. 3, 9, 10
    19.Wu W, Su P, Shaik S, Hiberty PC (2011) Chem Rev 111:7557CrossRef
    20.Lewis GN (1916) J Am Chem Soc 38:762CrossRef
    21.Langmuir I (1919) J Am Chem Soc 41:868CrossRef
    22.Jensen WB (1984) J Chem Educ 61:191CrossRef
    23.Heitler W, London F (1927) Z Phys 44: 455–472, English Translation Hettema H (2000) Quantum chemistry classic scientific paper. World Scientific, Singapore, pp 140–155
    24.London F (1928) Z Phys 46:455CrossRef
    25.Pauling L (1939) The nature of the chemical bond. Cornell University Press, Ithaca (3rd Edition, 1960)
    26.Slater JC (1965) J Chem Phys 43:S11CrossRef
    27.van Vleck JH, Sherman A (1935) Rev Mod Phys 7:167CrossRef
    28.Calvin M (1984) J Chem Educ 61:14CrossRef
    29.Saltzman MD (1996) Bull Hist Chem 19:25
    30.Gavroglu K, Simoes A (1994) Stud Biol Phys Sci 25:47CrossRef
    31.Sanderson RT (1983) Polar covalence. Academic, New York
    32.Edmiston C, Ruedenberg K (1963) Rev Mod Phys 35:457CrossRef
    33.Rutledge RM, Saturno AF (1965) J Chem Phys 43:597CrossRef
    34.Boys SF (1960) Rev Mod Phys 32:296CrossRef
    35.Foster JM, Boys SF (1960) Rev Mod Phys 32:300CrossRef
    36.Weinhold F, Landis CR (2005) Valency and bonding: a natural bond orbital donor-acceptor perspective. Cambridge Univeristy Press, CambridgeCrossRef
    37.Weinhold F, Landis CR (2012) Discovering chemistry with natural bond orbitals. Wiley, HobokenCrossRef
    38.Bader RFW, Nguyen-Dang TT (1981) Adv Quantum Chem 14:63CrossRef
    39.Henn J, Ilge D, Leusser D, Stalke D, Engles D (2004) J Phys Chem A 108:9442CrossRef
    40.Apeloig Y (1989) In: Apeloig Y, Rappoport Z (eds) The chemistry of organic silicon compounds, vol 1. Wiley, Chichester, ch. 2
    41.Laube T (1995) Acc Chem Res 28:399CrossRef
    42.Prakash GKS, Keyaniyan S, Aniszfeld SKR, Heiliger L, Olah GA, Stevens RC, Choi H-K, Bau R (1987) J Am Chem Soc 109:5123CrossRef
    43.Kato T, Reed A (2004) Angew Chem Int Ed 43:2908CrossRef
    44.Apeloig Y, Stanger A (1987) J Am Chem Soc 109:272CrossRef
    45.Lambert JB, Kania L, Zhang S (1995) Chem Rev 95:1191CrossRef
    46.Gomes de Mesquita AH, MacGillavry CH, Eriks K (1965) Acta Crystallogr 18:437CrossRef
    47.Lambert JB, Zhao Y (1997) Angew Chem Int Ed Engl 36:400CrossRef
    48.Kim K-C, Reed CA, Elliott DW, Mueller LJ, Tham F, Lin L, Lambert JB (2002) Science 297:825CrossRef
    49.Cremer D, Kraka E (1984) Angew Chem Int Ed Engl 23:627CrossRef
    50.Low AA, Hall MB (1990) In: Maksic ZB (ed) Theoretical models of chemical bonding. Springer, New York, pp 544–591, part 2
    51.Schwarz WHE, Valtazanos P, Ruedenberg K (1985) Theor Chim Acta 68:471CrossRef
    52.Lusar R, Beltrán A, Andrés J, Noury S, Silvi B (1999) J Comput Chem 20:1517CrossRef
    53.Silvi B (2003) J Phys Chem A 107:3081CrossRef
    54.Rincon L, Almeida R (1998) J Phys Chem A 102:9244CrossRef
    55.Kraka E, Cremer D (1990) In: Maksic ZB (ed) Theoretical models of chemical bonding. Springer, New York, pp 457–543, part 2
    56.Coppens P (2005) Angew Chem Int Ed 44:6810CrossRef
    57.Coppens P (1997) X-ray densities and chemical bonding. Oxford University Press, New York
    58.Messershmidt M, Scheins S, Grubert L, Patzel M, Szeimies G, Paulmann C, Luger P (2005) Angew Chem Int Ed 44:3925CrossRef
    59.Polo V, Andres J, Silvi B (2007) J Comput Chem 28:857CrossRef
    60.Maynau D, Malrieu J-P (1998) J Chem Phys 88:3163CrossRef
    61.Hiberty PC, Ramozzi R, Song L, Wu W, Shaik S (2006) Faraday Discuss 135:261CrossRef
    62.Kutzelnigg W (1990) In: Maksic ZB (ed) Theoretical models of chemical bonding. Springer, New York, pp 1–44, part 2
    63.Ruedenberg K (1962) Rev Mod Phys 34:326CrossRef
    64.Feinberg MJ, Ruedenberg K (1971) J Chem Phys 54:1495CrossRef
    65.Wilson CQ, Goddard WA III (1972) Theor Chim Acta 26:195CrossRef
    66.Rozendaal A, Baerends EJ (1985) Chem Phys 95:57CrossRef
    67.Ruedenberg K, Schmidt M (2007) J Comput Chem 28:391CrossRef
    68.Bickelhaupt FM, Baerends EJ (2000) Rev Comput Chem 15:1CrossRef
    69.Shaik SS (1989) In: Bertran J, Csizmadia GI (eds) New theoretical concepts for understanding organic reactions, vol C267, NATO ASI series. Kluwer, Dordrecht, pp 165–217CrossRef
    70.Ploshnik E, Danovich D, Hiberty PC, Shaik S (2001) J Chem Theory Comput 7:955CrossRef
    71.Su P, Song L, Wu W, Shaik S, Hiberty PC (2008) J Phys Chem A 112:2988CrossRef
    72.Hiberty PC, Danovich D, Shurki A, Shaik S (1995) J Am Chem Soc 117:7760CrossRef
    73.Messerschmidt M, Wagner A, Wong MW, Luger P (2002) J Am Chem Soc 124:732CrossRef
    74.Platts JA, Overgaard J, Jones C, Iversen BB, Stasch A (2011) J Phys Chem A 115:194CrossRef
    75.Dunitz JD, Seiler P (1983) J Am Chem Soc 105:7056CrossRef
    76.Dunitz JD, Schweizer WB, Seiler P (1983) Helv Chim Acta 66:123CrossRef
    77.Coppens P, Yang YW, Blessing RH, Cooper WF, Larsen FK (1977) J Am Chem Soc 99:760CrossRef
    78.Savariault J-M, Lehmann MS (1980) J Am Chem Soc 102:1298CrossRef
    79.Ruedenberg K, Schwarz WHE (1990) J Chem Phys 92:4956CrossRef
    80.Schwarz WHE, Ruedenberg K, Mensching L (1989) J Am Chem Soc 111:6926CrossRef
    81.Hiberty PC, Megret C, Song L, Wu W, Shaik S (2006) J Am Chem Soc 128:2836CrossRef
    82.O’Neal SV, Schaefer HF III, Bender CF (1974) Proc Natl Acad Sci U S A 71:104CrossRef
    83.Dunning TH Jr (1984) J Phys Chem 88:2469CrossRef
    84.Bender CF, Garrison BJ, Schaefer HF III (1975) J Chem Phys 62:1188CrossRef
    85.Voter AF, Goddard WA III (1981) J Chem Phys 75:3638CrossRef
    86.Dobbs KD, Dixon CA (1993) J Phys Chem 97:2085CrossRef
    87.Bartoszek FE, Manos DM, Polanyi JC (1978) J Chem Phys 69:933CrossRef
    88.Shaik S, Hiberty PC (2004) Rev Comput Chem 20:1
    89.Hach RJ, Rundle RE (1951) J Am Chem Soc 73:4321CrossRef
    90.Pimentel GC (1951) J Chem Phys 19:446CrossRef
    91.Coulson CA (1964) J Chem Soc 1442
    92.Braida B, Hiberty PC (2013) Nat Chem 5:417CrossRef
    93.Shaik SS (1991) In: Maksic ZB, Maksic ME (eds) An encomium to Linus Pauling. Molecules in natural science and medicine. Ellis Horwood, London
    94.Braida B, Ribeyre T, Hiberty PC (2014) Chem Eur J 20:9643CrossRef
    95.Woon DE, Dunning TH Jr (2010) J Phys Chem A 114:8845CrossRef
    96.Woon DE, Dunning TH Jr (2009) J Phys Chem A 113:7915CrossRef
    97.Chen L, Woon DE, Dunning TH Jr (2009) J Phys Chem A 113:12645CrossRef
    98.Pepkin VI, Lebedev YA, Apin AY (1969) Zh Fiz Khim 43:869
    99.Bartlett N, Sladky FO (1973) In: Blair JC, Emeleus HJ (eds) Comprehensive inorganic chemistry, vol 1. Pergamon, Oxford, Chapter 6
    100.Kost D, Kalikhman I (2009) Acc Chem Res 42:303CrossRef
    101.Hajdasz DJ, Squires RR (1986) J Am Chem Soc 108:3139CrossRef
    102.Sini G, Ohanessian G, Hiberty PC, Shaik SS (1990) J Am Chem Soc 112:1407CrossRef
    103.Shaik S, Shurki A (1999) Angew Chem Int Ed 38:586CrossRef
    104.Fiorillo AA, Galbraith JM (2004) J Phys Chem A 108:5126CrossRef
    105.Coote ML, Pross A, Radom L (2003) Org Lett 5:4689CrossRef
    106.Galbraith JM, Shurki A, Shaik S (2000) J Phys Chem 104:1262CrossRef
    107.Hiberty PC, Humbel S, Danovich D, Shaik S (1995) J Am Chem Soc 117:9003CrossRef
    108.Hiberty PC, Humbel S, Archirel P (1994) J Phys Chem 98:11697CrossRef
    109.Wu W, Shaik S (1999) Chem Phys Lett 301:37CrossRef
    110.Dávalos JZ, Herrero R, Abboud J-LM, Mó O, Yáñez M (2007) Angew Chem Int Ed 46:381CrossRef
    111.Panisch R, Bolte M, Müller T (2006) J Am Chem Soc 128:9676CrossRef
    112.Lühmann N, Panisch R, Hirao H, Shaik S, Müller T (2011) Organometallics 30:4087CrossRef
    113.Llusar R, Beltran A, Andrés J, Fuster F, Silvi B (2001) J Phys Chem A 105:9460CrossRef
    114.Cho KB, Carvajal MA, Shaik S (2009) J Phys Chem B 113:336CrossRef
    115.Grochala W, Hoffmann R, Feng J, Ashcroft NW (2007) Angew Chem Int Ed 46:3620CrossRef
    116.Dognon J-P, Clavaguéra C, Pyykkö P (2009) J Am Chem Soc 131:238CrossRef
    117.Rupar P, Straoverov VN, Baines KM (2008) Science 322:1360CrossRef
  • 作者单位:Sason Shaik (3)
    David Danovich (3)
    Benoit Braida (4) (5)
    Wei Wu (6)
    Philippe C. Hiberty (7)

    3. Institute of Chemistry and the Lise-Meitner Minerva Center for Computational Quantum Chemistry, The Hebrew University, Jerusalem, 9190401, Israel
    4. Sorbonne Universités, UPMC Univ. Paris 06, UMR 7616, LCT, 75005, Paris, France
    5. CNRS, UMR 7616, LCT, 75005, Paris, France
    6. The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
    7. Laboratoire de Chimie Physique, UMR CNRS 8000, Groupe de Chimie Théorique, Université de Paris-Sud, 91405, Orsay Cédex, France
  • 丛书名:The Chemical Bond II
  • ISBN:978-3-319-33522-3
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Inorganic Chemistry
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1616-8550
  • 卷排序:170
文摘
We discuss here the modern valence bond (VB) description of the electron-pair bond vis-à-vis the Lewis–Pauling model and show that along the two classical families of covalent and ionic bonds, there exists a family of charge-shift bonds (CSBs) in which the “resonance fluctuation” of the electron-pair density plays a dominant role. A bridge is created between the VB description of bonding and three other approaches to the problem: the electron localization function (ELF), atoms-in-molecules (AIM), and molecular orbital (MO)-based theories. In VB theory, CSB manifests by repulsive or weakly bonded covalent state and large covalent–ionic resonance energy, RE CS. In ELF, it shows up by a depleted basin population with fluctuations and in AIM by a positive Laplacian. CSB is derivable also from MO-based theory. As such, CSB is shown to be a fundamental mechanism that satisfies the equilibrium condition of bonding, namely, the virial ratio of the kinetic and potential energy contributions to the bond energy. The chapter defines the atomic propensity for CSB and outlines its territory: Atoms (fragments) that are prone to CSB are compact electronegative and/or lone-pair-rich species. As such, the territory of CSB transcends considerations of static charge distribution, and it involves (a) homopolar bonds of heteroatoms with zero static ionicity, (b) heteropolar σ- and π-bonds of the electronegative and/or electron-pair-rich elements among themselves and to other atoms (e.g., the higher metalloids, Si, Ge, Sn, etc.), and (c) electron-rich hypercoordinate molecules. Several experimental manifestations of charge-shift bonding are discussed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700