用户名: 密码: 验证码:
Synthesis and dielectric properties of Na0.5Bi0.5Cu3Ti4O12 ceramic by molten salt method
详细信息    查看全文
  • 作者:Yanli Su ; Ying Wang
  • 刊名:Applied Physics A: Materials Science & Processing
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:122
  • 期:3
  • 全文大小:1,261 KB
  • 参考文献:1.M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, J. Solid State Chem. 151, 323 (2000)ADS CrossRef
    2.A.P. Ramirez, M.A. Subramanian, M. Gardel, G. Blumberg, D. Li, T. Vogt, S.M. Shapiro, Solid State Commun. 115, 217 (2000)ADS CrossRef
    3.D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, Appl. Phys. Lett. 80, 2153 (2002)ADS CrossRef
    4.T.B. Adams, D.C. Sinclair, A.R. West, Adv. Mater. 14, 1321 (2002)CrossRef
    5.T.T. Fang, H.K. Shiau, J. Am. Ceram. Soc. 87, 2072 (2004)CrossRef
    6.T.T. Fang, C.P. Liu, Chem. Mater. 17, 5167 (2005)ADS CrossRef
    7.L. Ni, X.M. Chen, X.Q. Liu, R.Z. Hou, Solid State Commun. 139, 45 (2006)ADS CrossRef
    8.L. Marchin, S. Guillemet-Fritsch, B. Durand, J. Am. Ceram. Soc. 91, 485 (2008)CrossRef
    9.B.K. Kim, H.S. Lee, J.W. Lee, S.E. Lee, Y.S. Cho, J. Am. Ceram. Soc. 93, 2419 (2010)CrossRef
    10.R. Schmidt, M.C. Stennett, N.C. Hyatt, J. Pokomy, J. Prado-Gonjal, M. Li, D.C. Sinclair, J. Eur. Ceram. Soc. 32, 3313 (2012)CrossRef
    11.H.A. Ardakani, M. Alizadeh, R. Amini, M.R. Ghazanfari, Ceram. Int. 38, 4217 (2012)CrossRef
    12.Q. Zheng, H.Q. Fan, C.B. Long, J. Alloys Compd. 511, 90 (2012)CrossRef
    13.R.N.P. Choudhary, U. Bhunia, J. Mater. Sci. 37, 5177 (2002)ADS CrossRef
    14.J. Li, M.A. Subramanian, H.D. Rosenfeld, C.Y. Jones, B.H. Toby, A.W. Sleight, Chem. Mater. 16, 5223 (2004)CrossRef
    15.W.T. Hao, J.L. Zhang, Y.Q. Tan, W.B. Su, J. Am. Ceram. Soc. 92, 2937 (2009)CrossRef
    16.J.J. Liu, C.G. Duan, W.G. Yin, W.N. Mei, R.W. Smith, J.R. Hardly, Phys. Rev. B 70, 144106 (2004)ADS CrossRef
    17.D. Szwagierczak, J. Electroceram. 23, 56 (2009)CrossRef
    18.B.S. Prakash, K.B.R. Varma, Phys. B 382, 312 (2006)ADS CrossRef
    19.J.J. Liu, C.G. Duan, W.N. Mei, R.W. Smith, J.R. Hardly, J. Appl. Phys. 98, 093703 (2005)ADS CrossRef
    20.P. Thongbai, T. Yamwong, S. Maensiri, Mater. Res. Bull. 47, 432 (2012)CrossRef
    21.M.C. Ferrarelli, T.B. Adams, A. Feteira, D.C. Sinclair, A.R. West, Appl. Phys. Lett. 89, 212904 (2006)ADS CrossRef
    22.H.M. Ren, P.F. Liang, Z.P. Yang, Mater. Res. Bull. 45, 1608 (2010)CrossRef
    23.Z.P. Yang, H.M. Ren, X.L. Chao, P.F. Liang, Mater. Res. Bull. 47, 1273 (2012)CrossRef
    24.Y. Qiu, Z.Z. Ma, S.X. Huo, H.N. Duan, Z.M. Tian, S.L. Yuan, L. Chen, J. Mater. Sci. Mater. Electron. 23, 1587 (2012)CrossRef
    25.Y. Qiu, S.L. Yuan, Z.M. Tian, L. Chen, C.H. Wang, H.N. Duan, K. Guo, Appl. Phys. A 107, 379 (2012)ADS CrossRef
    26.Y.L. Su, J. Song, R. Liu, H. Huang, J. Electroceram. 30, 166 (2013)CrossRef
    27.B. Xu, J. Zhang, Z.M. Tian, S.L. Yuan, Mater. Lett. 75, 87 (2012)CrossRef
    28.W. Tuichai, P. Thongbai, V. Amornkitbamrung, T. Yamwong, S. Maensiri, Microelectron. Eng. 126, 118 (2014)CrossRef
    29.W. Tuichai, S. Danwittayakul, T. Yamwong, P. Thongbai, J. Sol–Gel. Sci. Technol. 76, 630 (2015)CrossRef
    30.X.H. Sun, C.C. Wang, G.J. Wang, C.M. Lei, T. Li, L.N. Liu, J. Am. Ceram. Soc. 96, 1497 (2013)CrossRef
    31.R.H. Arendt, J. Solid State Chem. 8, 339 (1973)ADS CrossRef
    32.R.H. Arendt, J.H. Rosolowski, J.W. Szymaszek, Mater. Res. Bull. 14, 703 (1979)CrossRef
    33.K.H. Yoon, Y.S. Cho, D.H. Kang, J. Mater. Sci. 33, 2977 (1998)ADS CrossRef
    34.S.W. Zhang, D.D. Jayaseelan, G. Bhattacharya, W.E. Lee, J. Am. Ceram. Soc. 89, 1724 (2006)CrossRef
    35.H. Hao, H.X. Liu, Y. Liu, M.H. Cao, S.X. Ouyang, J. Am. Ceram. Soc. 90, 1659 (2007)CrossRef
    36.Z.S. Li, S.W. Zhang, W.E. Lee, J. Eur. Ceram. Soc. 27, 3201 (2007)CrossRef
    37.H.L. Li, Z.N. Du, G.L. Wang, Y.C. Zhang, Mater. Lett. 64, 431 (2010)CrossRef
    38.K.P. Chen, X.W. Zhang, Ceram. Int. 36, 1523 (2010)CrossRef
    39.B.R. Li, X.T. Liu, P.L. Chen, Y.S. Zheng, Ceram. Int. 38, 105 (2012)CrossRef
    40.Y.L. Su, C. Sun, W.Q. Zhang, H. Huang, J. Mater. Sci. 48, 8147 (2013)CrossRef
    41.M.A. Subramanian, A.W. Sleight, Solid State Sci. 4, 347 (2002)ADS CrossRef
    42.T. Li, R.Z. Xue, J.H. Hao, Y.C. Xue, Z.P. Chen, J. Alloys Compd. 509, 1025 (2011)CrossRef
    43.S. Guillemet-Fritsch, T. Lebey, M. Boulos, B. Durand, J. Eur. Ceram. Soc. 26, 1245 (2006)CrossRef
    44.J.B. Wu, C.W. Nan, Y.H. Lin, Y. Deng, Phys. Rev. Lett. 89, 217601 (2002)ADS CrossRef
    45.J.J. Liu, C.G. Duan, W.N. Mei, R.W. Smith, J.R. Hardy, J. Appl. Phys. 98, 093703 (2005)ADS CrossRef
    46.K. Meeporn, T. Yamwong, S. Pinitsoontorn, V. Amornkitbamrung, P. Thongbai, Ceram. Int. 40, 15897 (2014)CrossRef
    47.H.T. Zhang, X.Y. Deng, T. Li, W. Zhang, R.K. Chen, W.W. Tian, J.B. Li, X.H. Wang, L.T. Li, Appl. Phys. Lett. 97, 162913 (2010)ADS CrossRef
  • 作者单位:Yanli Su (1)
    Ying Wang (1)

    1. College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou, 215123, China
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Condensed Matter
    Optical and Electronic Materials
    Nanotechnology
    Characterization and Evaluation Materials
    Surfaces and Interfaces and Thin Films
    Operating Procedures and Materials Treatment
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0630
文摘
Na0.5Bi0.5Cu3Ti4O12 (NBCTO) powder was prepared by molten salt method at 700, 750, 800, and 850 °C in NaCl–KCl flux salts, respectively. X-ray diffraction data revealed that the main NBCTO phase of powder was synthesized at a low temperature of 700 °C for 2 h in NaCl–KCl flux, which was reduced by about 250 °C compared with the conventional solid-state reaction method. The evolution of the microstructure was observed by scanning electron microscopy, and the dielectric properties of NBCTO ceramics affected by sintering temperature and sintering time were studied in detail in this paper. The complex impedance plots were also employed to analyze the dielectric properties of NBCTO ceramics. The average grain size of the sintered ceramic increased with the increase in sintering temperature, which lead to the increased dielectric constant of the NBCTO ceramic, whereas the sintering time has affected the dielectric constant slightly. A high dielectric constant of more than 104 and a low loss tangent (tanδ) of 0.06 (at 10 kHz) were obtained for the NBCTO ceramic sintered at 1040 °C for 12 h.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700