用户名: 密码: 验证码:
Expression and role of RIP140/NRIP1 in chronic lymphocytic leukemia
详细信息    查看全文
  • 作者:Marion Lapierre (1) (2) (3) (4)
    Audrey Castet-Nicolas (1) (2) (3) (4) (5)
    Delphine Gitenay (1) (2) (3) (4)
    St茅phan Jalaguier (1) (2) (3) (4)
    Catherine Teyssier (1) (2) (3) (4)
    Caroline Bret (3) (6) (7)
    Guillaume Cartron (3) (8) (9)
    J茅r么me Moreaux (3) (6) (7)
    Vincent Cavaill猫s (1) (2) (3) (4)

    1. IRCM
    ; Institut de Recherche en Canc茅rologie de Montpellier ; Montpellier ; F-34298 ; France
    2. INSERM
    ; U1194 ; Montpellier ; F-34298 ; France
    3. Universit茅 de Montpellier
    ; Montpellier ; F-34298 ; France
    4. Institut r茅gional du Cancer de Montpellier
    ; Montpellier ; F-34298 ; France
    5. Pharmacie
    ; CHU Montpellier ; Montpellier ; F-34298 ; France
    6. D茅partement d鈥橦茅matologie Biologique
    ; CHU Montpellier ; Montpellier ; F-34298 ; France
    7. Institut de G茅n茅tique Humaine
    ; CNRS UPR 1142 ; Montpellier ; F-34298 ; France
    8. D茅partement d鈥橦茅matologie Clinique
    ; CHU Montpellier ; Montpellier ; F-34298 ; France
    9. UMR-CNRS 5235
    ; Montpellier ; F-34298 ; France
  • 关键词:Chronic lymphocytic leukemia ; Cell signaling ; RIP140/NRIP1 ; Prognosis marker
  • 刊名:Journal of Hematology & Oncology
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:8
  • 期:1
  • 全文大小:662 KB
  • 参考文献:1. Chiorazzi, N, Rai, KR, Ferrarini, M (2005) Chronic lymphocytic leukemia. N Engl J Med 352: pp. 804-15 CrossRef
    2. Zenz, T, Mertens, D, K眉ppers, R, D枚hner, H, Stilgenbauer, S (2010) From pathogenesis to treatment of chronic lymphocytic leukaemia. Nat Rev Cancer 10: pp. 37-50
    3. Hallek, M, Cheson, BD, Catovsky, D, Caligaris-Cappio, F, Dighiero, G, D枚hner, H (2008) Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood 111: pp. 5446-56 CrossRef
    4. Cavailles, V, Dauvois, S, L鈥橦orset, F, Lopez, G, Hoare, S, Kushner, PJ (1995) Nuclear factor RIP140 modulates transcriptional activation by the estrogen receptor. EMBO J 14: pp. 3741-51
    5. Augereau, P, Badia, E, Carascossa, S, Castet, A, Fritsch, S, Harmand, P-O (2006) The nuclear receptor transcriptional coregulator RIP140. Nucl Recept Signal 4: pp. e024
    6. Christian, M, Tullet, JM, Parker, MG (2004) Characterization of four autonomous repression domains in the corepressor receptor interacting protein 140. J Biol Chem 279: pp. 15645-51 CrossRef
    7. Castet, A, Boulahtouf, A, Versini, G, Bonnet, S, Augereau, P, Vignon, F (2004) Multiple domains of the receptor-interacting protein 140 contribute to transcription inhibition. Nucleic Acids Res 32: pp. 1957-66 CrossRef
    8. Yang, X-J, Seto, E (2008) Lysine acetylation: codified crosstalk with other posttranslational modifications. Mol Cell 31: pp. 449-61 CrossRef
    9. Augereau, P, Badia, E, Fuentes, M, Rabenoelina, F, Corniou, M, Derocq, D (2006) Transcriptional regulation of the human NRIP1/RIP140 gene by estrogen is modulated by dioxin signalling. Mol Pharmacol 69: pp. 1338-46 CrossRef
    10. Docquier, A, Augereau, P, Lapierre, M, Harmand, P-O, Badia, E, Annicotte, J-S (2012) The RIP140 gene is a transcriptional target of E2F1. PLoS One 7: pp. e35839 CrossRef
    11. White, R, Leonardsson, G, Rosewell, I, Ann, JM, Milligan, S, Parker, M (2000) The nuclear receptor co-repressor nrip1 (RIP140) is essential for female fertility. Nat Med 6: pp. 1368-74 CrossRef
    12. Leonardsson, G, Steel, JH, Christian, M, Pocock, V, Milligan, S, Bell, J (2004) Nuclear receptor corepressor RIP140 regulates fat accumulation. Proc Natl Acad Sci U S A 101: pp. 8437-42 CrossRef
    13. Duclot, F, Lapierre, M, Fritsch, S, White, R, Parker, MG, Maurice, T (2012) Cognitive impairments in adult mice with constitutive inactivation of RIP140 gene expression. Genes Brain Behav 11: pp. 69-78 CrossRef
    14. Docquier, A, Harmand, P-O, Fritsch, S, Chanrion, M, Darbon, J-M, Cavaill猫s, V (2010) The transcriptional coregulator RIP140 represses E2F1 activity and discriminates breast cancer subtypes. Clin Cancer Res 16: pp. 2959-70 CrossRef
    15. Docquier, A, Garcia, A, Savatier, J, Boulahtouf, A, Bonnet, S, Bellet, V (2013) Negative regulation of estrogen signaling by ERbeta and RIP140 in ovarian cancer cells. Mol Endocrinol 27: pp. 1429-41 CrossRef
    16. Lapierre, M, Bonnet, S, Bascoul-Mollevi, C, Ait-Arsa, I, Jalaguier, S, Del Rio, M (2014) RIP140 increases APC expression and controls intestinal homeostasis and tumorigenesis. J Clin Invest 124: pp. 1899-913 CrossRef
    17. Aggarwal, R, Lu, J, Pompili, VJ, Das, H (2012) Hematopoietic stem cells: transcriptional regulation, ex vivo expansion and clinical application. Curr Mol Med 12: pp. 34-49 CrossRef
    18. Morrison, SJ, Scadden, DT (2014) The bone marrow niche for haematopoietic stem cells. Nature 505: pp. 327-34 CrossRef
    19. Passegu茅, E, Wagers, AJ, Giuriato, S, Anderson, WC, Weissman, IL (2005) Global analysis of proliferation and cell cycle gene expression in the regulation of hematopoietic stem and progenitor cell fates. J Exp Med 202: pp. 1599-611 CrossRef
    20. Huang, T-S, Hsieh, J-Y, Wu, Y-H, Jen, C-H, Tsuang, Y-H, Chiou, S-H (2008) Functional network reconstruction reveals somatic stemness genetic maps and dedifferentiation-like transcriptome reprogramming induced by GATA2. Stem Cells 26: pp. 1186-201 CrossRef
    21. Forsberg, EC, Passegu茅, E, Prohaska, SS, Wagers, AJ, Koeva, M, Stuart, JM (2010) Molecular signatures of quiescent, mobilized and leukemia-initiating hematopoietic stem cells. PLoS One 5: pp. e8785 CrossRef
    22. Van鈥檛 Veer, MB, Brooijmans, AM, Langerak, AW, Verhaaf, B, Goudswaard, CS, Graveland, WJ (2006) The predictive value of lipoprotein lipase for survival in chronic lymphocytic leukemia. Haematologica 91: pp. 56-63
    23. Damle, RN, Wasil, T, Fais, F, Ghiotto, F, Valetto, A, Allen, SL (1999) Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 94: pp. 1840-7
    24. Baliakas, P, Hadzidimitriou, A, Sutton, L-A, Rossi, D, Minga, E, Villamor, N (2015) Recurrent mutations refine prognosis in chronic lymphocytic leukemia. Leukemia 29: pp. 329-36 CrossRef
    25. Kienle, D, Benner, A, L盲ufle, C, Winkler, D, Schneider, C, B眉hler, A (2010) Gene expression factors as predictors of genetic risk and survival in chronic lymphocytic leukemia. Haematologica 95: pp. 102-9 CrossRef
    26. Zenz, T, Fr枚hling, S, Mertens, D, D枚hner, H, Stilgenbauer, S (2010) Moving from prognostic to predictive factors in chronic lymphocytic leukaemia (CLL). Best Pract Res Clin Haematol 23: pp. 71-84 CrossRef
    27. Herold, T, Jurinovic, V, Metzeler, KH, Boulesteix, A-L, Bergmann, M, Seiler, T (2011) An eight-gene expression signature for the prediction of survival and time to treatment in chronic lymphocytic leukemia. Leukemia 25: pp. 1639-45 CrossRef
    28. Haslinger, C, Schweifer, N, Stilgenbauer, S, D枚hner, H, Lichter, P, Kraut, N (2004) Microarray gene expression profiling of B-cell chronic lymphocytic leukemia subgroups defined by genomic aberrations and VH mutation status. J Clin Oncol 22: pp. 3937-49 CrossRef
    29. Vasconcelos, Y, De Vos, J, Vallat, L, R猫me, T, Lalanne, AI, Wanherdrick, K (2005) Gene expression profiling of chronic lymphocytic leukemia can discriminate cases with stable disease and mutated Ig genes from those with progressive disease and unmutated Ig genes. Leukemia 19: pp. 2002-5 CrossRef
    30. Oppezzo, P, Vasconcelos, Y, Settegrana, C, Jeannel, D, Vuillier, F, Legarff-Tavernier, M (2005) The LPL/ADAM29 expression ratio is a novel prognosis indicator in chronic lymphocytic leukemia. Blood 106: pp. 650-7 CrossRef
    31. D枚hner, H, Stilgenbauer, S, Benner, A, Leupolt, E, Kr枚ber, A, Bullinger, L (2000) Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 343: pp. 1910-6 CrossRef
    32. Bou Samra, E, Klein, B, Commes, T, Moreaux, J (2014) Identification of a 20-gene expression-based risk score as a predictor of clinical outcome in chronic lymphocytic leukemia patients. Biomed Res Int 2014: pp. 423174 CrossRef
    33. Shukla, A, Chaturvedi, NK, Ahrens, AK, Cutucache, CE, Mittal, AK, Bierman, P (2013) Stromal Tumor Microenvironment in Chronic Lymphocytic Leukemia: Regulation of Leukemic Progression. J Leuk 1: pp. 1-9 CrossRef
    34. Gasparini, C, Celeghini, C, Monasta, L, Zauli, G (2014) NF-魏B pathways in hematological malignancies. Cell Mol Life Sci 71: pp. 2083-102 CrossRef
    35. Cun铆, S, P茅rez-Aciego, P, P茅rez-Chac贸n, G, Vargas, JA, S谩nchez, A, Mart铆n-Saavedra, FM (2004) A sustained activation of PI3K/NF-kappaB pathway is critical for the survival of chronic lymphocytic leukemia B cells. Leukemia 18: pp. 1391-400 CrossRef
    36. Liu, Z, Hazan-Halevy, I, Harris, DM, Li, P, Ferrajoli, A, Faderl, S (2011) STAT-3 activates NF-魏B in chronic lymphocytic leukemia cells. Mol Cancer Res 9: pp. 507-15 CrossRef
    37. Xu, J, Zhou, P, Wang, W, Sun, A, Guo, F (2014) RelB, together with RelA, sustains cell survival and confers proteasome inhibitor sensitivity of chronic lymphocytic leukemia cells from bone marrow. J Mol Med 92: pp. 77-92 CrossRef
    38. Zschiedrich, I, Hardeland, U, Krones-Herzig, A, Berriel Diaz, M, Vegiopoulos, A, M眉ggenburg, J (2008) Coactivator function of RIP140 for NFkappaB/RelA-dependent cytokine gene expression. Blood 112: pp. 264-76 CrossRef
    39. Ho, P-C, Tsui, Y-C, Feng, X, Greaves, DR, Wei, L-N (2012) NF-魏B-mediated degradation of the coactivator RIP140 regulates inflammatory responses and contributes to endotoxin tolerance. Nat Immunol 13: pp. 379-86 CrossRef
    40. Bigas, A, Guiu, J, Gama-Norton, L (2013) Notch and Wnt signaling in the emergence of hematopoietic stem cells. Blood Cells Mol Dis 51: pp. 264-70 CrossRef
    41. Lu, D, Zhao, Y, Tawatao, R, Cottam, HB, Sen, M, Leoni, LM (2004) Activation of the Wnt signaling pathway in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 101: pp. 3118-23 CrossRef
    42. Thanendrarajan, S, Kim, Y, Schmidt-Wolf, IG (2011) Understanding and targeting the Wnt/尾-catenin signaling pathway in chronic leukemia. Leuk Res Treatment 2011: pp. 329572
    43. Gutierrez, A, Tschumper, RC, Wu, X, Shanafelt, TD, Eckel-Passow, J, Huddleston, PM (2010) LEF-1 is a prosurvival factor in chronic lymphocytic leukemia and is expressed in the preleukemic state of monoclonal B-cell lymphocytosis. Blood 116: pp. 2975-83 CrossRef
    44. Lu, D, Choi, MY, Yu, J, Castro, JE, Kipps, TJ, Carson, DA (2011) Salinomycin inhibits Wnt signaling and selectively induces apoptosis in chronic lymphocytic leukemia cells. Proc Natl Acad Sci U S A 108: pp. 13253-7 CrossRef
    45. Razavi, R, Gehrke, I, Gandhirajan, RK, Poll-Wolbeck, SJ, Hallek, M, Kreuzer, K-A (2011) Nitric oxide-donating acetylsalicylic acid induces apoptosis in chronic lymphocytic leukemia cells and shows strong antitumor efficacy in vivo. Clin Cancer Res 17: pp. 286-93 CrossRef
    46. Maffei, R, Bulgarelli, J, Fiorcari, S, Martinelli, S, Castelli, I, Valenti, V (2014) Endothelin-1 promotes survival and chemoresistance in chronic lymphocytic leukemia B cells through ETA receptor. PLoS One 9: pp. e98818 CrossRef
    47. Simonsson, B, Terenius, L, Nilsson, K (1982) Glucocorticoid receptors, clinical characteristics, and implications for prognosis in chronic lymphocytic leukemia. Cancer 49: pp. 2493-6 CrossRef
    48. Tung, S, Shi, Y, Wong, K, Zhu, F, Gorczynski, R, Laister, RC (2013) PPAR伪 and fatty acid oxidation mediate glucocorticoid resistance in chronic lymphocytic leukemia. Blood 122: pp. 969-80 CrossRef
    49. Geyeregger, R, Shehata, M, Zeyda, M, Kiefer, FW, Stuhlmeier, KM, Porpaczy, E (2009) Liver X receptors interfere with cytokine-induced proliferation and cell survival in normal and leukemic lymphocytes. J Leukoc Biol 86: pp. 1039-48 CrossRef
    50. Yakimchuk, K, Norin, S, Kimby, E, H盲gglund, H, Warner, M, Gustafsson, J-脜 (2012) Up-regulated estrogen receptor 尾2 in chronic lymphocytic leukemia. Leuk Lymphoma 53: pp. 139-44 CrossRef
    51. Li, P-P, Wang, X (2013) Role of signaling pathways and miRNAs in chronic lymphocytic leukemia. Chin Med J 126: pp. 4175-82
    52. Baldus, CD, Liyanarachchi, S, Mr贸zek, K, Auer, H, Tanner, SM, Guimond, M (2004) Acute myeloid leukemia with complex karyotypes and abnormal chromosome 21: amplification discloses overexpression of APP, ETS2, and ERG genes. Proc Natl Acad Sci U S A 101: pp. 3915-20 CrossRef
    53. Payton, JE, Grieselhuber, NR, Chang, L-W, Murakami, M, Geiss, GK, Link, DC (2009) High throughput digital quantification of mRNA abundance in primary human acute myeloid leukemia samples. J Clin Investig 119: pp. 1714-26 CrossRef
    54. Hasserjian, RP (2013) Acute myeloid leukemia: advances in diagnosis and classification. Int J Lab Hematol 35: pp. 358-66 CrossRef
    55. Zhang, R, Kim, YM, Yang, X, Li, Y, Li, S, Lee, J-Y (2011) A possible 5鈥?NRIP1/UHRF1-3鈥?fusion gene detected by array CGH analysis in a Ph鈥?鈥堿LL patient. Cancer Genet 204: pp. 687-91 CrossRef
    56. Haferlach, C, Bacher, U, Grossmann, V, Schindela, S, Zenger, M, Kohlmann, A (2012) Three novel cytogenetically cryptic EVI1 rearrangements associated with increased EVI1 expression and poor prognosis identified in 27 acute myeloid leukemia cases. Genes Chromosomes Cancer 51: pp. 1079-85 CrossRef
    57. Majumder, MM, Kontro, M, Edgren, H, Nicorici, D, Parsons, A, Karjalainen, R (2012) Abstract 3175: genomic and transcriptomic data integration in chronic myelomonocytic leukemia reveals a novel fusion gene involving onco-miR-125b-2. Cancer Res 72: pp. 3175-5 CrossRef
    58. Bichi, R, Shinton, SA, Martin, ES, Koval, A, Calin, GA, Cesari, R (2002) Human chronic lymphocytic leukemia modeled in mouse by targeted TCL1 expression. Proc Natl Acad Sci U S A 99: pp. 6955-60 CrossRef
    59. Bertilaccio, MTS, Scielzo, C, Simonetti, G, Ten Hacken, E, Apollonio, B, Ghia, P (2013) Xenograft models of chronic lymphocytic leukemia: problems, pitfalls and future directions. Leukemia 27: pp. 534-40 CrossRef
    60. Jacoby, E, Chien, CD, Fry, TJ (2014) Murine models of acute leukemia: important tools in current pediatric leukemia research. Front Oncol 4: pp. 95 CrossRef
  • 刊物主题:Oncology; Hematology; Cancer Research;
  • 出版者:BioMed Central
  • ISSN:1756-8722
文摘
RIP140 is a transcriptional coregulator, (also known as NRIP1), which finely tunes the activity of various transcription factors and plays very important physiological roles. Noticeably, the RIP140 gene has been implicated in the control of energy expenditure, behavior, cognition, mammary gland development and intestinal homeostasis. RIP140 is also involved in the regulation of various oncogenic signaling pathways and participates in the development and progression of solid tumors. During the past years, several papers have reported evidences linking RIP140 to hematologic malignancies. Among them, two recent studies with correlative data suggested that gene expression signatures including RIP140 can predict survival in chronic lymphocytic leukemia (CLL). This review aims to summarize the literature dealing with the expression of RIP140 in CLL and to explore the potential impact of this factor on transcription pathways which play key roles in this pathology.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700