用户名: 密码: 验证码:
SMAD7, an antagonist of TGF-beta signaling, is a candidate of prenatal skeletal muscle development and weaning weight in pigs
详细信息    查看全文
  • 作者:Chaoju Hua ; Zishuai Wang ; Jianbing Zhang ; Xing Peng…
  • 关键词:SMAD7 ; Skeletal muscle development ; miRNA ; 21 ; Association analysis ; Pig
  • 刊名:Molecular Biology Reports
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:43
  • 期:4
  • 页码:241-251
  • 全文大小:1,523 KB
  • 参考文献:1.Hayashi H et al (1997) The MAD-related protein Smad7 associates with the TGFβ receptor and functions as an antagonist of TGFβ signaling. Cell 89(7):1165–1173CrossRef PubMed
    2.Tang Y et al (2008) Smad7 stabilizes beta-catenin binding to E-cadherin complex and promotes cell-cell adhesion. J Biol Chem 283(35):23956–23963CrossRef PubMed PubMedCentral
    3.Halder SK et al (2008) Smad7 induces hepatic metastasis in colorectal cancer. Br J Cancer 99(6):957–965CrossRef PubMed PubMedCentral
    4.Hoover LL, Kubalak SW (2008) Holding their own: the noncanonical roles of Smad proteins. Sci Signal 1(46):pe48CrossRef PubMed PubMedCentral
    5.Emori T, Kitamura K, Okazaki K (2012) Nuclear Smad7 overexpressed in mesenchymal cells acts as a transcriptional Corepressor by interacting with HDAC-1 and E2F to Regulate cell cycle. Biol Open 1(3):247–260CrossRef PubMed PubMedCentral
    6.Stolfi C et al (2013) The dual role of Smad7 in the control of cancer growth and metastasis. Int J Mol Sci 14(12):23774–23790CrossRef PubMed PubMedCentral
    7.Monteleone G, Caruso R, Pallone F (2012) Role of Smad7 in inflammatory bowel diseases. World J Gastroenterol 18(40):5664–5668CrossRef PubMed PubMedCentral
    8.Yan X, Chen Y (2011) Smad7: not only a regulator, but also a cross-talk mediator of TGF-beta signalling. Biochem J 434:1–10CrossRef PubMed
    9.Chen Q et al (2009) Smad7 is required for the development and function of the heart. J Biol Chem 284(1):292–300CrossRef PubMed PubMedCentral
    10.Kollias HD et al (2006) Smad7 promotes and enhances skeletal muscle differentiation. Mol Cell Biol 26(16):6248–6260CrossRef PubMed PubMedCentral
    11.Miyake T, Alli NS, McDermott JC (2010) Nuclear function of Smad7 promotes myogenesis. Mol Cell Biol 30(3):722–735CrossRef PubMed PubMedCentral
    12.Cohen TV et al (2015) Genetic disruption of Smad7 impairs skeletal muscle growth and regeneration. J Physiol 593(11):2479–2497CrossRef PubMed
    13.Yanagisawa M et al (2011) Community effect triggers terminal differentiation of myogenic cells derived from muscle satellite cells by quenching Smad signaling. Exp Cell Res 317(2):221–233CrossRef PubMed
    14.Massagué J (2012) TGFβ signalling in context. Nat Rev Mol Cell Biol 13(10):616–630CrossRef PubMed PubMedCentral
    15.Salerno MS et al (2004) Molecular analysis of fiber type-specific expression of murine myostatin promoter. Am J Physiol 287(4):C1031–C1040CrossRef
    16.McFarlane C et al (2008) Myostatin signals through Pax7 to regulate satellite cell self-renewal. Exp Cell Res 314(2):317–329CrossRef PubMed
    17.Allen RE, Boxhorn LK (1987) Inhibition of skeletal muscle satellite cell differentiation by transforming growth factor-beta. J Cell Physiol 133(3):567–572CrossRef PubMed
    18.Ebisawa T et al (2001) Smurf1 interacts with transforming growth factor-beta type I receptor through Smad7 and induces receptor degradation. J Biol Chem 276(16):12477–12480CrossRef PubMed
    19.Kavsak P et al (2000) Smad7 Binds to Smurf2 to Form an E3 Ubiquitin Ligase that targets the TGFβ receptor for degradation. Mol Cell 6(6):1365–1375CrossRef PubMed
    20.Londhe P, Davie JK (2011) Sequential association of myogenic regulatory factors and E proteins at muscle-specific genes. Skelet Muscle 1(1):1–18CrossRef
    21.Rao PK et al (2006) Myogenic factors that regulate expression of muscle-specific microRNAs. Proc Natl Acad Sci 103(23):8721–8726CrossRef PubMed PubMedCentral
    22.Williams AH et al (2009) MicroRNA control of muscle development and disease. Curr Opin Cell Biol 21(3):461–469CrossRef PubMed PubMedCentral
    23.Chen J-F et al (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 38(2):228–233CrossRef PubMed PubMedCentral
    24.Chen J-F et al (2010) microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7. J Cell Biol 190(5):867–879CrossRef PubMed PubMedCentral
    25.Zhao S et al (2012) OLFML3 expression is decreased during prenatal muscle development and regulated by microRNA-155 in pigs. Int J Biol Sci 8(4):459CrossRef PubMed PubMedCentral
    26.Hou X et al (2012) Discovery of MicroRNAs associated with myogenesis by deep sequencing of serial developmental skeletal muscles in pigs. PLoS ONE 7(12):e52123CrossRef PubMed PubMedCentral
    27.Zhang J et al (2012) MicroRNA-148a promotes myogenic differentiation by targeting the ROCK1 gene. J Biol Chem 287(25):21093–21101CrossRef PubMed PubMedCentral
    28.Tang Z et al (2014) CNN3 is regulated by microRNA-1 during muscle development in pigs. Int J Biol Sci 10(4):377CrossRef PubMed PubMedCentral
    29.Yang Y et al (2015) Wnt antagonist, secreted frizzled-related protein 1, is involved in prenatal skeletal muscle development and is a target of miRNA-1/206 in pigs. BMC Mol Biol 16(1):4CrossRef PubMed PubMedCentral
    30.Bai L et al (2015) MicroRNA-21 regulates PI3 K/Akt/mTOR signaling by targeting TGFbetaI during skeletal muscle development in pigs. PLoS ONE 10(5):e0119396CrossRef PubMed PubMedCentral
    31.Tang Z et al (2007) LongSAGE analysis of skeletal muscle at three prenatal stages in Tongcheng and Landrace pigs. Genome Biol 8(6):R115CrossRef PubMed PubMedCentral
    32.Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative pcr and the 2 − ΔΔC T Method. Methods 25(4):402–408CrossRef PubMed
    33.Benkert P, Biasini M, Schwede T (2011) Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 27(3):343–350CrossRef PubMed PubMedCentral
    34.Davoli R et al (2011) Expression profiling of functional genes in prenatal skeletal muscle tissue in Duroc and Pietrain pigs. J Anim Breed Genet 128(1):15–27CrossRef PubMed
    35.Wigmore P, Stickland N (1983) Muscle development in large and small pig fetuses. J Anat 137(Pt 2):235PubMed PubMedCentral
    36.Allen RE, Boxhorn LK (1989) Regulation of skeletal muscle satellite cell proliferation and differentiation by transforming growth factor-beta, insulin-like growth factor I, and fibroblast growth factor. J Cell Physiol 138(2):311–315CrossRef PubMed
    37.McPherron AC, Lawler AM, Lee SJ (1997) Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387(6628):83–90CrossRef PubMed
    38.Kambadur R et al (1997) Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Res 7(9):910–916PubMed
    39.Afrakhte M et al (1998) Induction of inhibitory Smad6 and Smad7 mRNA by TGF-beta family members. Biochem Biophys Res Commun 249(2):505–511CrossRef PubMed
    40.Miyazono K (2000) Positive and negative regulation of TGF-beta signaling. J Cell Sci 113(Pt 7):1101–1109PubMed
    41.Luff AR, Goldspink G (1967) Large and small muscles. Life Sci 6(17):1821–1826CrossRef PubMed
    42.Staun H (1972) Nutritional and genetic influence on number and size of muscle fibres and their response to carcass quality in pigs. World Rev Anim Prod
    43.Forbes D et al (2006) Myostatin auto-regulates its expression by feedback loop through Smad7 dependent mechanism. J Cell Physiol 206(1):264–272CrossRef PubMed
    44.Ashmore C, Addis P, Doerr L (1973) Development of muscle fibers in the fetal pig. J Anim Sci 36(6):1088–1093PubMed
    45.Lee SJ (2004) Regulation of muscle mass by myostatin. Annu Rev Cell Dev Biol 20:61–86CrossRef PubMed
    46.Lu Z et al (2008) MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene 27(31):4373–4379CrossRef PubMed
    47.Haider KH et al (2010) MicroRNA-21 is a key determinant in IL-11/Stat3 anti-apoptotic signalling pathway in preconditioning of skeletal myoblasts. Cardiovasc Res 88(1):168–178CrossRef PubMed PubMedCentral
    48.Liu G et al (2010) miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J Exp Med 207(8):1589–1597CrossRef PubMed PubMedCentral
  • 作者单位:Chaoju Hua (1)
    Zishuai Wang (1)
    Jianbing Zhang (3)
    Xing Peng (1)
    Xinhua Hou (1)
    Yalan Yang (1)
    Kui Li (1) (2)
    Zhonglin Tang (1) (2)

    1. The Key Laboratory for Domestic Animal Genetic Resources and Breeding of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Hai Dian, Beijing, 100193, People’s Republic of China
    3. Institute of Animal Science, Tianjin Agriculture University, Xi Qing, Tianjin, 300384, People’s Republic of China
    2. Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, People’s Republic of China
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Animal Anatomy, Morphology and Histology
    Animal Biochemistry
  • 出版者:Springer Netherlands
  • ISSN:1573-4978
文摘
SMAD7 promotes and enhances skeletal muscle differentiation by inhibiting transforming growth factor beta (TGF-β)/activin signaling and bone morphogenetic protein (BMP) pathways. However, its function, the mechanism regulating its translation, and its association with production meat traits remain unclear in pigs. In this study, we explored SMAD7 gene spatio-temporal and tissue distribution, conducted a single nucleotide polymorphism association analysis, and examined regulation of its expression during skeletal muscle development. We found that SMAD7 was positively related to TGF-β pathway genes and mainly expressed in prenatal developing muscle, and dual luciferase and western blot assays demonstrated that SMAD7 expression was regulated by miRNA-21 at the protein level via inhibition of mRNA translation. Finally, the association analysis showed that a single nucleotide mutation (Exon 4_28816;C/A) was significantly associated with the weaning weight of piglets among Yorkshire pigs. These data indicate that SMAD7 plays a potentially important role in mammalian prenatal skeletal muscle development and is a candidate gene for promoting greater weaning weight in pig breeding.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700