用户名: 密码: 验证码:
Suppression of displacement detection in the presence and absence of eye movements: a neuro-computational perspective
详细信息    查看全文
  • 作者:Julia Bergelt ; Fred H. Hamker
  • 关键词:Space perception ; Saccadic suppression of displacement ; Masking ; Computational model
  • 刊名:Biological Cybernetics
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:110
  • 期:1
  • 页码:81-89
  • 全文大小:1,388 KB
  • 参考文献:Braddick O (1973) The masking of apparent motion in random-dot patterns. Vis Res 13(2):355–369CrossRef PubMed
    Braddick O (1974) A short-range process in apparent motion. Vis Res 14(7):519–527CrossRef PubMed
    Bridgeman B, Hendry D, Stark L (1975) Failure to detect displacement of the visual world during saccadic eye movements. Vis Res 15:719–722CrossRef PubMed
    Burr DC, Holt J, Johnstone JR, Ross J (1982) Selective depression of motion sensitivity during saccades. J Physiol 333:1–15PubMedCentral CrossRef PubMed
    Burr DC, Ross J, Binda P, Morrone MC (2010) Saccades compress space, time and number. Trends Cogn Sci 14:528–533CrossRef PubMed
    Campbell FW, Wurtz RH (1978) Saccadic omission: why we do not see a grey-out during a saccadic eye movement. Vis Res 18:1297–1303CrossRef PubMed
    Cassanello CR, Ferrera VP (2007) Computing vector differences using a gain field-like mechanism in monkey frontal eye field. J Physiol 582(2):647–664PubMedCentral CrossRef PubMed
    Deubel H, Schneider WX, Bridgeman B (1996) Postsaccadic target blanking prevents saccadic suppression of image displacement. Vis Res 36(7):985–996CrossRef PubMed
    Ferraina S, Par M, Wurtz RH (2002) Comparison of cortico-cortical and cortico-collicular signals for the generation of saccadic eye movements. J Neurophysiol 87(2):845–858PubMed
    Hamker FH (2005) The reentry hypothesis: the putative interaction of the frontal eye field, ventrolateral prefrontal cortex, and areas v4, it for attention and eye movement. Cereb Cortex 15:431–447CrossRef PubMed
    Hamker FH (2007) The mechanisms of feature inheritance as predicted by a systems-level model of visual attention and decision making. Adv Cogn Psychol 3:111–123PubMedCentral CrossRef
    Hamker FH, Zirnsak M, Calow D, Lappe M (2008) The peri-saccadic perception of objects and space. PLoS Comput Biol 4(2):1–15CrossRef
    Hamker FH, Zirnsak M, Ziesche A, Lappe M (2011) Computational models of spatial updating in peri-saccadic perception. Philos Trans R Soc Lond B Biol Sci 336(1564):554–571CrossRef
    Herzog MH, Koch C (2001) Seeing properties of an invisible object: feature inheritance and shine-through. Proc Nat Acad Sci 98(7):4271–4275PubMedCentral CrossRef PubMed
    Kiani R, Hanks TD, Shadlen MN (2008) Bounded integration in parietal cortex underlies decisions even when viewing duration is dictated by the environment. J Neurosci 28(12):3017–3029CrossRef PubMed
    Lappe M, Michels L, Awater H (2010) Visual and nonvisual factors in perisaccadic compression of space. In: Nijhawan R, Khurana B (eds) Space and time in perception and action. Cambridge University Press, Cambridge, pp 38–51CrossRef
    Melcher D, Colby CL (2008) Trans-saccadic perception. Trends Cogn Sci 12(12):466–473CrossRef PubMed
    Niemeier M, Crawford JD, Tweed DB (2003) Optimal transsaccadic integration explains distorted spatial perception. Nature 422(6927):76–80CrossRef PubMed
    Ostendorf F, Liebermann D, Ploner CJ (2013) A role of the human thalamus in predicting the perceptual consequences of eye movements. Front Syst Neurosci 7:10
    Pouget A, Deneve S, Duhamel JR (2002) A computational perspective on the neural basis of multisensory spatial representations. Nat Rev Neurosci 3:741–747CrossRef PubMed
    Ross J, Morrone MC, Goldberg ME, Burr DC (2001) Changes in visual perception at the time of saccades. Trends Neurosci 24:113–121CrossRef PubMed
    Salinas E, Sejnowski TJ (2001) Gain modulation in the central nervous system: where behavior, neurophysiology, and computation meet. Neuroscientist 7(5):430–440PubMedCentral CrossRef PubMed
    Shioiri S, Cavanagh P (1989) Saccadic suppression of low-level motion. Vis Res 29(8):915–928CrossRef PubMed
    Sommer MA, Wurtz RH (2004) What the brain stem tells the frontal cortex. I. Oculomotor signals sent from superior colliculus to frontal eye field via mediodorsal thalamus. J Neurophysiol 91(3):1381–1402CrossRef PubMed
    Stanford TR, Shankar S, Massoglia DP, Costello MG, Salinas E (2010) Perceptual decision making in less than 30 milliseconds. Nat Neurosci 13(3):379–385PubMedCentral CrossRef PubMed
    Volkmann FC, Riggs LA, White KD, Moore RK (1978) Contrast sensitivity during saccadic eye movements. Vis Res 18(9):1193–1199CrossRef PubMed
    Wang X, Zhang M, Cohen IS, Goldberg ME (2007) The proprioceptive representation of eye position in monkey primary somatosensory cortex. Nat Neurosci 10:640–646CrossRef PubMed
    Watson TL, Krekelberg B (2009) The relationship between saccadic suppression and perceptual stability. Curr Biol 19(12):1040–1043PubMedCentral CrossRef PubMed
    Wurtz RH (2008) Neuronal mechanisms of visual stability. Vis Res 48(20):2070–2089PubMedCentral CrossRef PubMed
    Xu BY, Karachi C, Goldberg ME (2012) The postsaccadic unreliability of gain fields renders it unlikely that the motor system can use them to calculate target position in space. Neuron 76(6):1201–1209PubMedCentral CrossRef PubMed
    Ziesche A, Hamker FH (2011) A computational model for the influence of corollary discharge and proprioception on the perisaccadic mislocalization of briefly presented stimuli in complete darkness. J Neurosci 31(48):17392–17405CrossRef PubMed
    Ziesche A, Hamker FH (2014) Brain circuits underlying visual stability across eye movements—converging evidence for a neuro-computational model of area LIP. Front Comput Neurosci 8(25):1–15
    Zimmermann E, Born S, Fink GR, Cavanagh P (2014) Masking produces compression of space and time in the absence of eye movements. J Neurophysiol 112(12):3066–3076PubMedCentral CrossRef PubMed
    Zirnsak M, Moore T (2014) Saccades and shifting receptive fields: Anticipating consequences or selecting targets? Trends Cogn Sci 18(12):621–628PubMedCentral CrossRef PubMed
  • 作者单位:Julia Bergelt (1)
    Fred H. Hamker (1)

    1. Artificial Intelligence, Computer Science, Chemnitz University of Technology, Chemnitz, Germany
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Neurosciences
    Computer Application in Life Sciences
    Neurobiology
    Bioinformatics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0770
文摘
Understanding the subjective experience of a visually stable world during eye movements has been an important research topic for many years. Various studies were conducted to reveal fundamental mechanisms of this phenomenon. For example, in the paradigm saccadic suppression of displacement (SSD), it has been observed that a small displacement of a saccade target could not easily be reported if this displacement took place during a saccade. New results from Zimmermann et al. (J Neurophysiol 112(12):3066–3076, 2014) show that the effect of being oblivious to small displacements occurs not only during saccades, but also if a mask is introduced while the target is displaced. We address the question of how neurons in the parietal cortex may be connected to each other to account for the SSD effect in experiments involving a saccade and equally well in the absence of an eye movement while perception is disrupted by a mask. Keywords Space perception Saccadic suppression of displacement Masking Computational model

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700