用户名: 密码: 验证码:
Structural insight for substrate tolerance to 2-deoxyribose-5-phosphate aldolase from the pathogen Streptococcus suis
详细信息    查看全文
  • 作者:Thinh-Phat Cao ; Joong-Su Kim ; Mi-Hee Woo ; Jin Myung Choi…
  • 关键词:2 ; deoxyribose ; 5 ; phosphate aldolase ; Class I aldolase ; TIM ; barrel ; S. suis ; DERA
  • 刊名:Journal of Microbiology
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:54
  • 期:4
  • 页码:311-321
  • 全文大小:1,080 KB
  • 参考文献:Adams, P.D., Grosse-Kunstleve, R.W., Hung, L.W., Ioerger, T.R., McCoy, A.J., Moriarty, N.W., Read, R.J., Sacchettini, J.C., Sauter, N.K., and Terwilliger, T.C. 2002. Phenix: Building new software for automated crystallographic structure determination. Acta Crystallogr. D. Biol. Crystallogr. 58, 1948–1954.CrossRef PubMed
    Barth, P.T., Beacham, I.R., Ahmad, S.I., and Pritchard, R.H. 1968. The inducer of the deoxynucleoside phosphorylases and deoxyriboaldolase in Escherichia coli. Biochim. Biophys. Acta 161, 554–557.CrossRef PubMed
    Baugh, L., Phan, I., Begley, D.W., Clifton, M.C., Armour, B., Dranow, D.M., Taylor, B.M., Muruthi, M.M., Abendroth, J., Fairman, J.W., et al. 2015. Increasing the structural coverage of tuberculosis drug targets. Tuberculosis 95, 142–148.CrossRef PubMed PubMedCentral
    Berkowitz, S.A. 2006. Role of analytical ultracentrifugation in assessing the aggregation of protein biopharmaceuticals. AAPS J. 8, e590–605.CrossRef
    Berthiaume, L., Loisel, T.P., and Sygusch, J. 1991. Carboxyl terminus region modulates catalytic activity of recombinant maize aldolase. J. Biol. Chem. 266, 17099–17105.PubMed
    Blom, N. and Sygusch, J. 1997. Product binding and role of the cterminal region in class i d-fructose 1,6-bisphosphate aldolase. Nat. Struct. Biol. 4, 36–39.CrossRef PubMed
    Chen, V.B., Arendall, W.B., Headd, J.J., Keedy, D.A., Immormino, R.M., Kapral, G.J., Murray, L.W., Richardson, J.S., and Richardson, D.C. 2010. Molprobity: All-atom structure validation for macromolecular crystallography. Acta Crystallogr. D. Biol. Crystallogr. 66, 12–21.CrossRef PubMed PubMedCentral
    Corsini, A., Maggi, F.M., and Catapano, A.L. 1995. Pharmacology of competitive inhibitors of HMg-CoA reductase. Pharmacol. Res. 31, 9–27.CrossRef PubMed
    DeSantis, G., Liu, J., Clark, D.P., Heine, A., Wilson, I.A., and Wong, C.H. 2003. Structure-based mutagenesis approaches toward expanding the substrate specificity of d-2-deoxyribose-5-phosphate aldolase. Bioorg. Med. Chem. 11, 43–52.CrossRef PubMed
    Edgar, R.C. 2004. Muscle: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797.CrossRef PubMed PubMedCentral
    Emsley, P. and Cowtan, K. 2004. Coot: Model-building tools for molecular graphics. Acta Crystallogr. D. Biol. Crystallogr. 60, 2126–2132.CrossRef PubMed
    Endo, A. 1992. The discovery and development of hmgcoa reductase inhibitors. J. Lipid R. 33, 1569–1582.
    Greenberg, W.A., Varvak, A., Hanson, S.R., Wong, K., Huang, H., Chen, P., and Burk, M.J. 2004. Development of an efficient, scalable, aldolase-catalyzed process for enantioselective synthesis of statin intermediates. Proc. Natl. Acad. Sci. USA 101, 5788–5793.CrossRef PubMed PubMedCentral
    Guo, B.B., Devenish, S.R., Dobson, R.C., Muscroft-Taylor, A.C., and Gerrard, J.A. 2009. The c-terminal domain of Escherichia coli dihydrodipicolinate synthase (dhdps) is essential for maintenance of quaternary structure and efficient catalysis. Biochem. Biophys. Res. Commun. 380, 802–806.CrossRef PubMed
    Hannappel, E., MacGregor, J.S., Davoust, S., and Horecker, B.L. 1982. Limited proteolysis of liver and muscle aldolases: Effects of subtilisin, cathepsin b, and Staphylococcus aureus protease. Arch. Biochem. Biophys. 214, 293–298.CrossRef PubMed
    Heine, A., DeSantis, G., Luz, J.G., Mitchell, M., Wong, C.H., and Wilson, I.A. 2001. Observation of covalent intermediates in an enzyme mechanism at atomic resolution. Science 294, 369–374.CrossRef PubMed
    Heine, A., Luz, J.G., Wong, C.H., and Wilson, I.A. 2004. Analysis of the class i aldolase binding site architecture based on the crystal structure of 2-deoxyribose-5-phosphate aldolase at 0.99 Å resolution. J. Mol. Biol. 343, 1019–1034.CrossRef PubMed
    Humphreys, L., Reid, S., and Masters, C. 1986. Evidence for the spatial separation of the binding sites for substrate and for cytoskeletal proteins on the enzyme aldolase. Int. J. Biochem. 18, 7–13.CrossRef PubMed
    Istvan, E.S. and Deisenhofer, J. 2001. Structural mechanism for statin inhibition of HMg-CoA reductase. Science 292, 1160–1164.CrossRef PubMed
    Krissinel, E. and Henrick, K. 2004. Secondary-structure matching (ssm), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr. D. Biol. Crystallogr. 60, 2256–2268.CrossRef PubMed
    Krissinel, E. and Henrick, K. 2007. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797.CrossRef PubMed
    Liu, J., Andya, J.D., and Shire, S.J. 2006. A critical review of analytical ultracentrifugation and field flow fractionation methods for measuring protein aggregation. AAPS J. 8, e580–589.CrossRef
    Lokanath, N.K., Shiromizu, I., Ohshima, N., Nodake, Y., Sugahara, M., Yokoyama, S., Kuramitsu, S., Miyano, M., and Kunishima, N. 2004. Structure of aldolase from thermus thermophilus hb8 showing the contribution of oligomeric state to thermostability. Acta Crystallogr. D. Biol. Crystallogr. 60, 1816–1823.CrossRef PubMed
    Lun, Z.R., Wang, Q.P., Chen, X.G., Li, A.X., and Zhu, X.Q. 2007. Streptococcus suis: An emerging zoonotic pathogen. Lancet. Infect. Dis. 7, 201–209.CrossRef PubMed
    Machajewski, T.D. and Wong, C.H. 2000. The catalytic asymmetric aldol reaction. Angew. Chem. Int. Edi. Engl. 39, 1352–1374.CrossRef
    Otwinowski, Z. 1997. Processing of x-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 1–9.
    Rashid, N., Imanaka, H., Fukui, T., Atomi, H., and Imanaka, T. 2004. Presence of a novel phosphopentomutase and a 2-deoxyribose 5-phosphate aldolase reveals a metabolic link between pentoses and central carbon metabolism in the hyperthermophilic archaeon Thermococcus kodakaraensis. J. Bacteriol. 186, 4185–4191.CrossRef PubMed PubMedCentral
    Robert, X. and Gouet, P. 2014. Deciphering key features in protein structures with the new endscript server. Nucleic Acids Res. 42, W320–324.CrossRef PubMed PubMedCentral
    Sakuraba, H., Tsuge, H., Shimoya, I., Kawakami, R., Goda, S., Kawarabayasi, Y., Katunuma, N., Ago, H., Miyano, M., and Ohshima, T. 2003. The first crystal structure of archaeal aldolase. Unique tetrameric structure of 2-deoxy-d-ribose-5-phosphate aldolase from the hyperthermophilic archaea Aeropyrum pernix. J. Biol. Chem. 278, 10799–10806.PubMed
    Schuck, P. 2003. On the analysis of protein self-association by sedimentation velocity analytical ultracentrifugation. Anal. Biochem. 320, 104–124.CrossRef PubMed
    Sgarrella, F., Poddie, F.P.A., Meloni, M.A., Sciola, L., Pippia, P., and Tozzi, M.G. 1997. Channelling of deoxyribose moiety of exogenous DNA into carbohydrate metabolism: Role of deoxyriboaldolase. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 117, 253–257.CrossRef PubMed
    St-Jean, M. and Sygusch, J. 2007. Stereospecific proton transfer by a mobile catalyst in mammalian fructose-1,6-bisphosphate aldolase. J. Biol. Chem. 282, 31028–31037.CrossRef PubMed
    Staats, J.J., Feder, I., Okwumabua, O., and Chengappa, M.M. 1997. Streptococcus suis: Past and present. Vet. Res. Commun. 21, 381–407.CrossRef PubMed
    Sygusch, J., Beaudry, D., and Allaire, M. 1987. Molecular architecture of rabbit skeletal muscle aldolase at 2.7-a resolution. Proc. Natl. Acad. Sci. USA 84, 7846–7850.CrossRef PubMed PubMedCentral
    Tozzi, M.G., Camici, M., Mascia, L., Sgarrella, F., and Ipata, P.L. 2006. Pentose phosphates in nucleoside interconversion and catabolism. FEBS J. 273, 1089–1101.CrossRef PubMed
    Vagin, A. and Teplyakov, A. 2010. Molecular replacement with molrep. Acta Crystallogr. D. Biol. Crystallogr. 66, 22–25.CrossRef PubMed
    Vedadi, M., Lew, J., Artz, J., Amani, M., Zhao, Y., Dong, A., Wasney, G.A., Gao, M., Hills, T., Brokx, S., et al. 2007. Genome-scale protein expression and structural biology of plasmodium falciparum and related apicomplexan organisms. Mol. Biochem. Parasitol. 151, 100–110.CrossRef PubMed
    Wertheim, H.F., Nghia, H.D., Taylor, W., and Schultsz, C. 2009. Streptococcus suis: An emerging human pathogen. Clin. Infect. Dis. 48, 617–625.CrossRef PubMed
  • 作者单位:Thinh-Phat Cao (1) (3)
    Joong-Su Kim (2)
    Mi-Hee Woo (2)
    Jin Myung Choi (1) (5)
    Youngsoo Jun (5) (6)
    Kun Ho Lee (3) (4)
    Sung Haeng Lee (1)

    1. Department of Cellular and Molecular Medicine, Chosun University School of Medicine, Gwangju, 501-759, Republic of Korea
    3. National Research Center for Dementia, Chosun University, Gwangju, 61452, Republic of Korea
    2. Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 580-185, Republic of Korea
    5. School of Life Sciences and Silver Health Bio Research Center, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
    6. School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
    4. Department of Biomedical Science, Chosun University, Gwangju, 61452, Republic of Korea
  • 刊物主题:Microbiology;
  • 出版者:Springer Netherlands
  • ISSN:1976-3794
文摘
2-deoxyribose-5-phosphate aldolase (DERA) is a class I aldolase that catalyzes aldol condensation of two aldehydes in the active site, which is particularly germane in drug manufacture. Structural and biochemical studies have shown that the active site of DERA is typically loosely packed and displays broader substrate specificity despite sharing conserved folding architecture with other aldolases. The most distinctive structural feature of DERA compared to other aldolases is short and flexible C-terminal region. This region is also responsible for substrate recognition. Therefore, substrate tolerance may be related to the C-terminal structural features of DERA. Here, we determined the crystal structures of full length and C-terminal truncated DERA from Streptococcus suis (SsDERA). In common, both contained the typical (α/β)8 TIM-barrel fold of class I aldolases. Surprisingly, C-terminal truncation resulting in missing the last α9 and β8 secondary elements, allowed DERA to maintain activity comparable to the fulllength enzyme. Specifically, Arg186 and Ser205 residues at the C-terminus appeared mutually supplemental or less indispensible for substrate phosphate moiety recognition. Our results suggest that DERA might adopt a shorter C-terminal region than conventional aldolases during evolution pathway, resulting in a broader range of substrate tolerance through active site flexibility.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700