用户名: 密码: 验证码:
The Influence of Surface Nanocrystallization Induced by Shot Peening on Corrosion Behavior of NiTi Alloy
详细信息    查看全文
  • 作者:S. Olumi ; S. K. Sadrnezhaad ; M. Atai
  • 关键词:corrosion ; nanocrystaline ; NiTi alloys ; shot peening
  • 刊名:Journal of Materials Engineering and Performance
  • 出版年:2015
  • 出版时间:August 2015
  • 年:2015
  • 卷:24
  • 期:8
  • 页码:3093-3099
  • 全文大小:1,355 KB
  • 参考文献:1.C.D.J. Barras and K.A. Myers, Nitinol-Its use in Vascular Surgery and Other Applications, Eur. J. Vasc. Endovasc. Surg., 2000, 19(6), p 564鈥?69View Article
    2.M.H. Elahinia, M. Hashemi, M. Tabesh, and S.B. Bhaduri, Manufacturing and Processing of NiTi Implants: A Review, Prog. Mater Sci., 2012, 57(5), p 911鈥?46View Article
    3.F.X. Gil, J.M. Manero, and J.A. Planell, Relevant Aspects in the Clinical Applications of NiTi Shape Memory Alloys, J. Mater. Sci., 1996, 7(7), p 403鈥?06
    4.B.J. Park and Y.K. Kim, Metallic Biomaterials, Balance, 2003, 1, p 50
    5.K.W.K. Yeung, R.W.Y. Poon, X.Y. Liu, J.P.Y. Ho, C.Y. Chung, P.K. Chu, W.W. Lu, D. Chan, and K.M.C. Cheung, Investigation of Nickel Suppression and Cytocompatibility of Surface-Treated Nickel-Titanium Shape Memory Alloys by Using Plasma Immersion Ion Implantation, J. Biomed. Mater. Res. Part A, 2005, 72(3), p 238鈥?45View Article
    6.H. Maleki-Ghaleh, J. Khalil-Allafi, M. Sadeghpour-Motlagh, M.S. Shakeri, S. Masoudfar, A. Farrokhi, Y.B. Khosrowshahi, A. Nadernezhad, M.H. Siadati, M. Javidi, M. Shakiba, and E. Aghaie, Effect of Surface Modification by Nitrogen Ion Implantation on the Electrochemical and Cellular Behaviors of Super-Elastic NiTi Shape Memory Alloy, J. Mater. Sci., 2014, 25(12), p 2605鈥?617
    7.X. Liu, P.K. Chu, and C. Ding, Surface Modification of Titanium, Titanium Alloys, and Related Materials for Biomedical Applications, Mater. Sci. Eng., 2004, 47(3), p 49鈥?21View Article
    8.A.K. Shukla, R. Balasubramaniam, and S. Bhargava, Properties of Passive Film Formed on CP Titanium, Ti-6Al-4V and Ti-13.4 Al-29Nb Alloys in Simulated Human Body Conditions, Intermetallics, 2005, 13(6), p 631鈥?37View Article
    9.S. Shabalovskaya, J. Anderegg, and J.V. Humbeeck, Critical Overview of Nitinol Surfaces and Their Modifications for Medical Applications, Acta Biomater., 2008, 4(3), p 447鈥?67View Article
    10.T. Sun, L.P. Wang, and M. Wang (Ti, O)/Ti and (Ti, O, N)/Ti Composite Coatings Fabricated via PIIID for the Medical Application of NiTi Shape Memory Alloy, J. Biomed. Mater. Res. B, 2011, 96(2), p 249鈥?60View Article
    11.X.Y. Wang and D.Y. Li, Mechanical, Electrochemical and Tribological Properties of Nano-Crystalline Surface of 304 Stainless Steel, Wear, 2003, 255(7), p 836鈥?45View Article
    12.A. Balyanov, J. Kutnyakova, N.A. Amirkhanova, V.V. Stolyarov, R.Z. Valiev, X.Z. Liao, Y.H. Zhao, Y.B. Jiang, H.F. Xu, T.C. Lowe, and Y.T. Zhu, Corrosion Resistance of Ultra Fine-Grained Ti, Scr. Mater., 2004, 51(3), p 225鈥?29View Article
    13.L. Wang, Y. Lin, Zh Zeng, W. Liu, Q. Xue, L. Hu, and J. Zhang, Electrochemical Corrosion Behavior of Nanocrystalline Co Coatings Explained by Higher Grain Boundary Density, Electrochim. Acta, 2007, 52(13), p 4342鈥?350View Article
    14.A. Balakrishnan, B.C. Lee, T.N. Kim, and B.B. Panigrahi, Corrosion Behaviour of Ultra Fine Grained Titanium in Simulated Body Fluid for Implant Application, Trends Biomater. Artif. Organs, 2008, 22(1), p 194鈥?08
    15.C.T. Kwok, F.T. Cheng, H.C. Man, and W.H. Ding, Corrosion Characteristics of Nanostructured Layer on 316L Stainless Steel Fabricated by Cavitation-Annealing, Mater. Lett., 2006, 60(19), p 2419鈥?422View Article
    16.M. Umemoto, Y. Todaka, and K. Tsuchiya, Formation of Nanocrystalline Structure in Steels by Air Blast Shot Peening, Mater. Trans., 2003, 44(7), p 1488鈥?493View Article
    17.S. Bagherifard, I.F. Pariente, R. Ghelichi, and M. Guagliano, Fatigue Properties of Nanocrystallized Surfaces Obtained by High Energy Shot Peening, Procedia Eng., 2010, 2(1), p 1683鈥?690View Article
    18.X.Y. Wang and D.Y. Li, Mechanical and Electrochemical Behavior of Nanocrystalline Surface of 304 Stainless Steel, Electrochim. Acta, 2002, 47(24), p 3939鈥?947View Article
    19.M. Mhaede, F. Pastorek, and B. Hadzima, Influence of Shot Peening on Corrosion Properties of Biocompatible Magnesium Alloy AZ31 Coated by Dicalcium Phosphate Dihydrate (DCPD), Mater. Sci. Eng. C, 2014, 39, p 330鈥?35View Article
    20.T. Wang, J. Yu, and B. Dong, Surface Nanocrystallization Induced by Shot Peening and Its Effect on Corrosion Resistance of 1Cr18Ni9Ti Stainless Steel, Surf. Coat. Technol., 2006, 200(16), p 4777鈥?781View Article
    21.K. Ce and R. Birringer, Estimating Grain-Size Distributions in Nanocrystalline Materials from x-ray Diffraction Profile Analysis, Philos. Mag. A, 1998, 77(3), p 621鈥?40View Article
    22.R. Guinebreti猫re, X-ray Diffraction by Polycrystalline Materials, ISTE Ltd, London, 2007
    23.S.N. Rosenbloom, R. Corbett, An Assessment of ASTM F 2129 Electrochemical Testing of Small Medical Implants鈥擫essons Learned, Corrosion 2007 Conference & Expo, 2007, p 11鈥?5.
    24.X.P. Jiang, X.Y. Wang, J.X. Li, D.Y. Li, C.-S. Man, M.J. Shepard, and T. Zhai, Enhancement of Fatigue and Corrosion Properties of Pure Ti by Sandblasting, Mater. Sci. Eng. A, 2006, 429(1), p 30鈥?5View Article
    25.T. Hu, Y.C. Xin, S.L. Wu, C.L. Chu, J. Lu, L. Guan, H.M. Chen, T.F. Hung, K.W.K. Yeung, and P.K. Chu, Corrosion Behavior on Orthopedic NiTi Alloy with Nanocrystalline/Amorphous Surface, Mater. Chem. Phys., 2011, 126(1), p 102鈥?07View Article
    26.F.L. Nie, Y.F. Zheng, Y. Cheng, S.C. Wei, and R.Z. Valiev, In Vitro Corrosion and Cytotoxicity on Microcrystalline, Nanocrystalline and Amorphous NiTi Alloy Fabricated by High Pressure Torsion, Mater. Lett., 2010, 64(8), p 983鈥?86View Article
    27.Z.J. Zheng, Y. Gao, Y. Gui, and M. Zhu, Corrosion Behaviour of Nanocrystalline 304 Stainless Steel Prepared by Equal Channel Angular Pressing, Corros. Sci., 2012, 54, p 60鈥?7View Article
    28.T. Hu, Ch Chu, Y. Xin, Sh Wu, K.W.K. Yeung, and P.K. Chu, Corrosion Products and Mechanism on NiTi Shape Memory Alloy in Physiological Environment, J. Mater. Res., 2010, 25(02), p 350鈥?58View Article
    29.H.B. Lu, Y. Li, and F.H. Wang, Synthesis of Porous Copper from Nanocrystalline Two-Phase Cu-Zr Film by Dealloying, Scr. Mater., 2007, 56(2), p 165鈥?68View Article
    30.L. Liu, Y. Li, and F. Wang, Electrochemical Corrosion Behavior of Nanocrystalline Materials鈥擜 Review, J. Mater. Sci. Technol., 2010, 26(1), p 1鈥?4View Article
    31.H. Maleki-Ghaleh, K. Hajizadeh, A. Hadjizadeh, M.S. Shakeri, S.G. Alamdari, S. Masoudfar, E. Aghaie, M. Javidi, J. Zdunek, and K.J. Kurzydlowski, Electrochemical and Cellular Behavior of Ultrafine-Grained Titanium In Vitro, Mater. Sci. Eng. C, 2014, 39, p 299鈥?04View Article
  • 作者单位:S. Olumi (1)
    S. K. Sadrnezhaad (2)
    M. Atai (3)

    1. Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
    2. Department of Material Science and Engineering, Sharif University of Technology, Tehran, Iran
    3. Iran Polymer and Petrochemical Institute, Tehran, Iran
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Characterization and Evaluation Materials
    Materials Science
    Tribology, Corrosion and Coatings
    Quality Control, Reliability, Safety and Risk
    Engineering Design
  • 出版者:Springer New York
  • ISSN:1544-1024
文摘
Nickel-titanium (NiTi) shape memory alloys have been widely used as implant materials, due to their superior shape memory properties and similar mechanical behavior to bone tissue. The presence of nickel on the surface of nickel-titanium alloy and release of this ion in the body environment will result in some allergic reactions. In current study, we used shot pinning process to produce nanocrystalline nickel-titanium alloy with increased corrosion resistance. Field emission scanning electron microscopy (FE-SEM), x-ray diffraction (XRD) analysis, and atomic force microscopy were employed to investigate the surface features of samples. The quantitative chemical analysis of NiTi and modified NiTi samples was conducted by energy dispersive x-ray method. The electrochemical behavior of NiTi alloy was evaluated using the potentiodynamic polarization scan and electrochemical impedance spectroscopy tests in Ringer solution after and prior to the shot pining process. The result of XRD analysis of modified samples showed an average crystalline size of 23 nm. Moreover, FE-SEM confirmed the development of a nanostructured alloy induced by shot pinning process. Modification of NiTi alloy by shot-peening process resulted in corrosion resistance improvement and decrease in the corrosion rate, which consequently led to less release rate of the toxic nickel ions in the corrosive environment, compared to the non-modified samples.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700