用户名: 密码: 验证码:
Investigation of graphene-based nanomaterial as nanocarrier for adsorption of paclitaxel anticancer drug: a molecular dynamics simulation study
详细信息    查看全文
文摘
In this work, molecular dynamics simulations are used to study the adsorption of paclitaxel (PTX) drug on the graphene-based nanomaterials including graphene (G), graphene oxide (GO), and functionalized GO with chitosan (GO-CS). The drug is adsorbed through different patterns on the surface of graphene-based nanomaterials. Our results show that PTX on graphene is adsorbed more quickly than other systems. Comparing center of mass (COM) in GO and GO-CS systems indicated that PTX approaches GO-CS surface faster than GO surface. The binding of PTX molecule to graphene surface is stronger than the other investigated systems. Our study indicated that π−π stacking and hydrophobic interactions are the main driving forces for the adsorption of the drug on graphene, while the adsorption of PTX on GO-CS is dominated by the formation of hydrogen bonds. It is found that the number of hydrogen bonds in PTX-GO-CS system is more than that of PTX−GO emphasizing the advantages of the functional group of chitosan in improving the adsorption of the drug onto nanomaterial. These results suggest that hydrogen bond, π-π stacking, and hydrophobic interactions play a key role in the adsorption of PTX in graphene-based nanomaterials. In spite of similar dimensions of investigated nanomaterials, the difference in surface chemistries and also the type of functional group can be effective factors in determining their interactions with PTX.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700