用户名: 密码: 验证码:
Effects of Stabilized Nanoparticles of Copper, Zinc, Manganese, and Iron Oxides in Low Concentrations on Lettuce (Lactuca sativa) Seed Germination: Nanotoxicants or Nanonutrients?
详细信息    查看全文
  • 作者:Ruiqiang Liu ; Huiying Zhang ; Rattan Lal
  • 关键词:Nanoparticles ; Nanotoxicity ; Nanofertilizer ; Phytotoxicity ; Lettuce ; Agriculture
  • 刊名:Water, Air, and Soil Pollution
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:227
  • 期:1
  • 全文大小:3,368 KB
  • 参考文献:Adams, L. K., Lyon, D. Y., & Alvarez, P. J. (2006). Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Research, 40, 3527–3532.CrossRef
    Auffan, M., Rose, J., Bottero, J. Y., Lowry, G. V., Jolivet, J. P., & Wiesner, M. R. (2009). Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nature Nanotechnology, 4, 634–641.CrossRef
    Bowers, N., Pratt, J. R., Beeson, D., & Lewis, M. (1997). Comparative evaluation of soil toxicity using lettuce seeds and soil ciliates. Environmental Toxicology & Chemistry, 16, 207–213.
    Delfani, M., Firouzabadi, M. B., Farrokhi, N., & Makarian, H. (2014). Some physiological responses of black-eyed pea to iron and magnesium nanofertilizers. Communication in Soil Science and Plant Analysis, 45, 530–540.CrossRef
    Dimkpa, C. O., McLean, J. E., Latta, D. E., Manangón, E., Britt, D. W., Johnson, W. P., Boyanov, M. I., & Anderson, A. J. (2012). CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. Journal of Nanoparticle Research, 14, 1125–1140.CrossRef
    Dixon, J. B., & White, G. N. (2002). Manganese oxides. In J. B. Dixon & D. G. Schulze (Eds.), Soil Mineralogy with Environmental Applications (pp. 367–388). Madison: Soil Science Society of America.
    Downs, R.T. (2006). The RRUFF Project: an integrated study of the chemistry, crystallography, Raman and infrared spectroscopy of minerals. Program and Abstracts of the 19th General Meeting of the International Mineralogical Association in Kobe, Japan. O03-13. http://​rruff.​info/​tenorite/​names/​asc/​R120076 . http://​rruff.​info/​chem=​Zn,%20​O/​display=​default/​R060027 . Accessed on 27 March 2015.
    Fabricius, A.-L., Duester, L., Meermann, B., & Ternes, T. A. (2014). ICP-MS-based characterization of inorganic nanoparticles—sample preparation and off-line fractionation strategies. Analytical and Bioanalytical Chemistry, 406, 467–479.CrossRef
    Fageria, N. K. (2009). The use of nutrients in crop plants. Boca Raton, FL: CRC Press.
    Feng, X., Liu, F., Tan, W., & Liu, X. (2004). Synthesis of birnessite from the oxidation of Mn2+ by O2 in alkali medium: effects of synthesis conditions. Clay and Clay Minerals, 52, 240–250.CrossRef
    Ghafariyan, M. H., Malakouti, M. J., Dadpour, M. R., Stroeve, P., & Mahmoudi, M. (2013). Effects of magnetite nanoparticles on soybean chlorophyll. Environmental Science & Technology, 47, 10645–10652.
    Gottschalk, F., Sun, T., & Nowak, B. (2013). Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies. Environmental Pollution, 181, 287–300.CrossRef
    Hoagland, D. R., & Arnon, D. I. (1950). The water-culture method for growing plants without soil. California Agriculture Experiment Stat Circular, 347, 1–32. http://​en.​wikipedia.​org/​wiki/​Hoagland_​solution . Accessed on 20 January 2015.
    Horie, M., Fujita, K., Kato, H., Endoh, S., Nishio, K., Komaba, L. K., Nakamura, A., Miyauchi, A., Kinugasa, H., Hagihara, Y., Niki, E., Yoshida, Y., & Iwahashi, H. (2012). Association of the physical and chemical properties and the cytotoxicity of metal oxide nanoparticles: metal ion release, adsorption ability and specific surface area. Metallomics, 4, 350–360.CrossRef
    Karlsson, H. L., Cronholm, P., Gustafsson, J., & Möller, L. (2008). Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chemical Research in Toxicology, 21, 1726–1732.CrossRef
    Kaweeteerawat, C., Ivask, A., Liu, R., Zhang, H., Chang, C. H., Low-Kam, C., Fischer, H., Ji, Z., Pokhrel, S., Cohen, Y., Telesca, D., Zink, J., Mädler, L., Holden, P. A., & Godwin, H. (2015). Toxicity of metal oxide nanoparticles in Escherichia coli correlates with conduction band and hydration energies. Environmental Science & Technology, 49, 1105–1112.CrossRef
    Kopittke, P. M., Blamey, F. P. C., Asher, C. J., & Menzies, N. W. (2010). Trace metal phytotoxicity in solution culture: a review. Journal of Experimental Botany, 61, 945–954.CrossRef
    Lee, S., Chung, H., Kim, S., & Lee, I. (2013). The genotoxic effect of ZnO and CuO nanoparticles on early growth of buckwheat Fagopyrum esculentum. Water Air Soil Pollution, 224, 1668–1678.CrossRef
    Lin, D., & Xing, B. (2007). Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environmental Pollution, 150, 243–250.CrossRef
    Liu, R., & Lal, R. (2014). Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Scientific Reports, 4(5686), 1–6.
    Liu, R., & Lal, R. (2015). Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of the Total Environment, 514, 131–139.CrossRef
    Ma, H., Williams, P. L., & Diamond, S. A. (2013). Ecotoxicity of manufactured ZnO nanoparticles—a review. Environmental Pollution, 172, 76–85.CrossRef
    Mahajan, P., Dhoke, S. K., & Khanna, A. S. (2011). Effect of nano-ZnO particle suspension on growth of mung (Vigna radiata) and gram (Cicer arietinum) seedlings using plant agar method. Journal of Nanotechnology, 696535, 1–7. doi:10.​1155/​2011/​696535 .CrossRef
    Montgomery, D. C. (2009). Design and analysis of experiments (7th ed.). New York, NY: John Wiley & Sons.
    Navarro, E., Baun, A., Behra, R., Hartmann, N. B., Filser, J., Miao, A. J., Quigg, A., Santschi, P. H., & Sigg, L. (2008). Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology, 17, 372–386.CrossRef
    Peng, C., Duan, D., Xu, C., Chen, Y., Sun, L., Zhang, H., Yuan, X., Zheng, L., Yang, Y., Yang, J., Zhen, X., Chen, Y., & Shi, J. (2015). Translocation and biotransformation of CuO nanoparticles in rice (Oryza sativa L.) plants. Environmental Pollution, 197, 99–107.
    Phu, N. D., Ngo, D. T., Hoang, L. H., Luong, N. H., Chau, N., & Hai, N. H. (2011). Crystallization process and magnetic properties of amorphous iron oxide nanoparticles. Journal of Physics D: Applies Physics, 44(345002), 1–7. doi:10.​1088/​0022-3727/​44/​34/​345002 .
    Portehault, D., Cassaignon, S., Baudrinc, E., & Jolivet, J. P. (2009). Structural and morphological control of manganese oxide nanoparticles upon soft aqueous precipitation through MnO4 /Mn2+ reaction. Journal of Materials Chemistry, 19, 2407–2416.CrossRef
    Pradhan, S., Patra, P., Das, S., Chandra, S., Mitra, S., Dey, K. K., Akbar, S., Palit, P., & Goswami, A. (2013). Photochemical modulation of biosafe manganese nanoparticles on Vigna radiata: a detailed molecular, biochemical, and biophysical study. Environmental Science & Technology, 47, 13122–13131.CrossRef
    Roco, M. C. (2011). The long view of nanotechnology development: the national nanotechnology initiative at 10 years. Journal of Nanoparticle Research, 13, 427–445.CrossRef
    Servin, A., Elmer, W., Mukherjee, A., Torre-Roche, R. D., Hamdi, H., White, J. C., Bindraban, P., & Dimkpa, C. (2015). A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. Journal of Nanoparticle Research, 17, 92–112.CrossRef
    Shaw, A. K., & Hossain, Z. (2013). Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Chemosphere, 93, 906–915.CrossRef
    USEPA—United State Environmental Protection Agency (2013). Secondary drinking water regulations: guidance for nuisance chemicals http://​water.​epa.​gov/​drink/​contaminants/​ secondarystandards.cfm. Accessed on 06 April 2015.
    USEPA—United State Environmental Protection Agency (2015). EPA is now distributing BMDS 2.6. http://​www.​epa.​gov/​ncea/​bmds/​new.​html . Accessed on 03/26/2015.
    Wu, S. G., Huang, L., Head, J., Chen, D. R., Kong, I. C., & Tang, Y. J. (2012). Phytotoxicity of metal oxide nanoparticles is related to both dissolved metals ions and adsorption of particles on seed surfaces. Journal of Petroleum & Environmental Biotechnology, 3, 126–130.
    Zhang, Y., Sun, C., Lu, P., Li, K., Song, S., & Xue, D. (2012). Crystallization design of MnO2 towards better supercapacitance. CrystEngComm, 14, 5892–5897.CrossRef
    Zhang, D., Hua, T., Xiao, F., Chen, C., Gersberg, R. M., Liu, Y., Stuckey, D., Ng, W. J., & Tan, S. K. (2015). Phytotoxicity and bioaccumulation of ZnO nanoparticles in Schoenoplectus tabernaemontani. Chemosphere, 120, 211–219.CrossRef
    Zhao, L., Sun, Y., Hernandez-Viezcas, J. A., Servin, A .D., Hong, J., Niu, G., Peralta-Videa, J. R., Duarte-Gardea, M., & Gardea-Torresdey, J. L. (2013). Influence of CeO2 and ZnO nanoparticles on cucumber physiological markers and bioaccumulation of Ce and Zn: A life cycle study. Journal of Agricultural and Food Chemistry, 61, 11945–11951.
  • 作者单位:Ruiqiang Liu (1)
    Huiying Zhang (1) (2)
    Rattan Lal (1)

    1. Carbon Management and Sequestration Center, School of Environment and Natural Resources, The Ohio State University, Columbus, OH, 43210, USA
    2. School of Chemical and Biological Engineering, Hechi University, Yi’zhou, Guangxi, 546300, People’s Republic of China
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Environment
    Atmospheric Protection, Air Quality Control and Air Pollution
    Waste Water Technology, Water Pollution Control, Water Management and Aquatic Pollution
    Terrestrial Pollution
    Hydrogeology
  • 出版者:Springer Netherlands
  • ISSN:1573-2932
文摘
Information on the phytotoxicity of nanoparticles (NPs) at low concentrations (e.g., ppb to low ppm) is scarce. Therefore, this study was conducted to assess the effects of laboratory-prepared Cu, Zn, Mn, and Fe oxide NPs in low concentrations (<50 ppm) on the germination of lettuce (Lactuca sativa) seeds in a water medium. The data showed that CuO NPs were slightly more toxic than Cu ions while the toxicity of ZnO NPs was similar to that of Zn ions, and MnOx NPs and FeOx NPs were not only less toxic than their ionic counterparts but also significantly stimulated the growth of lettuce seedlings by 12–54 %. This study showed that manufactured NPs were not always more toxic than other chemical species containing the same elements. Instead, Mn or Fe NPs can significantly enhance plant growth and have the potential to be effective nanofertilizers for increasing agronomic productivity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700