用户名: 密码: 验证码:
Graphene nanosheet-induced toughening of yttria-stabilized zirconia
详细信息    查看全文
  • 作者:Jianan Su ; Yao Chen ; Qiqi Huang
  • 刊名:Applied Physics A
  • 出版年:2017
  • 出版时间:January 2017
  • 年:2017
  • 卷:123
  • 期:1
  • 全文大小:
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Condensed Matter Physics; Optical and Electronic Materials; Nanotechnology; Characterization and Evaluation of Materials; Surfaces and Interfaces, Thin Films; Operating Procedures, Materials Treatment
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1432-0630
  • 卷排序:123
文摘
Graphene nanosheet (GNS)-reinforced yttria-stabilized tetragonal zirconia polycrystals (TZP) were synthesized using spark plasma sintering (SPS), and the influences of the added GNSs on microstructure evolution and the microscopic mechanical properties of the sintered composites were investigated. Raman spectroscopy and microstructure observation corroborated that these added GNSs, which can survive the harsh SPS processing condition, homogeneously distribute in the matrix of all composites to hinder significantly the grain growth. In comparison with the monolithic TZP, the indentation fracture toughness of a GNS/TZP composite reaches maximum value and increases by up to ~36% (from ~4.1 to ~5.6 MPa m0.5) even at 0.5% weight fraction, GNS pullout, crack bridging, crack deflection, and crack branching are responsible for the increased fracture toughness. The computed energy dissipation by GNS pullout decreases with increasing the number of graphene layers due to weak bonding between them, and therefore, graphene agglomeration would impair toughening effect. Moreover, scratch studies suggest that GNS/TZP composites exhibit improved scratch resistance due to the fact that GNSs are promising reinforcing and lubricating nanofillers in ceramic composites.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700