用户名: 密码: 验证码:
Microstructural Evolution in Hot and Cold-Rolled Ti-Nb Alloy
详细信息    查看全文
  • 作者:A. Tabei ; J. Startt ; R. T. Hoffman III…
  • 关键词:deformation ; martensite ; microstructure ; texture ; Ti ; Nb
  • 刊名:Journal of Materials Engineering and Performance
  • 出版年:2017
  • 出版时间:January 2017
  • 年:2017
  • 卷:26
  • 期:1
  • 页码:61-68
  • 全文大小:
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Characterization and Evaluation of Materials; Tribology, Corrosion and Coatings; Quality Control, Reliability, Safety and Risk; Engineering Design;
  • 出版者:Springer US
  • ISSN:1544-1024
  • 卷排序:26
文摘
Phase transformations, morphology, and crystallographic texture evolution in hot and cold-rolled Ti-25.51 wt.% Nb alloys are investigated. The experimental procedure involves synthesis of the alloy by arc melting followed by cold or hot rolling with intermediate prior and postheat treatments. Composition and phase analysis of all alloys are conducted using x-ray diffraction techniques and microstructural observations are conducted using an optical microscope. These examinations reveal that the as-melted alloy possesses large millimeter size grains with no stored strain energy and a two phase β − α′ microstructure. Direct cold rolling followed by a short homogenization leads to a β − α′′ mixture with ω precipitates. Two hour annealing before cold rolling leads to an α′ − α′′ mixture with a characteristic triangular martensitic microstructure evidencing the act of shear on formation of the phase. Hot rolling followed by a water quench results in a β − α′′ mixture, while annealing prior to hot rolling transforms the arc-melted material to a α′ − α′′ mixture. The crystallographic textures of similar microstructure mixtures in hot and cold-rolled samples are distinctively different. The analysis shows that the microstructure serves as an identifying characteristic of the processing paths and is highly dependent on the mode of processing.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700