用户名: 密码: 验证码:
Microbial D-amino acids and marine carbon storage
详细信息    查看全文
  • 作者:ZiLian Zhang ; Qiang Zheng ; NianZhi Jiao
  • 关键词:microbe ; D ; amino acid ; dissolved organic carbon ; marine carbon storage
  • 刊名:Science China Earth Sciences
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:59
  • 期:1
  • 页码:17-24
  • 全文大小:644 KB
  • 参考文献:Abe H, Okuma E, Amano H, Noda H, Watanabe K. 1999. Role of free d- and l-alanine in the Japanese mitten crab Eriocheir japonicus to intracellular osmoregulation during downstream spawning migration. Comp Biochem Phys A, 123: 55–59CrossRef
    Auclair J, Patton R. 1950. On the occurrence of D-alanine in the haemolymph of the milkweed bug, oncopeltus fasciatus. Rev Can Biol, 9: 3
    Azam F, Malfatti F. 2007. Microbial structuring of marine ecosystems. Nature Rev Microbiol, 5: 782–791CrossRef
    Barja I, Núñez L. 1999. Microcalorimetric measurements of the influence of glucose concentration on microbial activity in soils. Soil Biol Biochem, 31: 441–447CrossRef
    Brodowski S, Amelung W, Lobe I, Du Preez C C. 2005. Losses and biogeochemical cycling of soil organic nitrogen with prolonged arable cropping in the South African Highveld—Evidence from D- and L-amino acids. Biogeochemistry, 71: 17–42CrossRef
    Brown M, Lauro F, Demaere M, Muir L, Wilkins D, Thomas T, Riddle M, Fuhrman J, Andrews-Pfannkoch C, Hoffman J. 2012. Global biogeography of SAR11 marine bacteria. Mol Syst Biol, 8: 595CrossRef
    Brückner H, Westhauser T. 2003. Chromatographic determination of L-and D-amino acids in plants. Amino Acids, 24: 43–55CrossRef
    Dauwe B, Middelburg J J. 1998. Amino acids and hexosamines as indicators of organic matter degradation state in North Sea sediments. Limnol Oceanogr, 43: 782–798CrossRef
    Delfosse V, Girard E, Birck C, Delmarcelle M, Delarue M, Poch O, Schultz P, Mayer C. 2009. Structure of the archaeal pab87 peptidase reveals a novel self-compartmentalizing protease family. PLoS One, 4: e4712
    DeLong E F. 1992. Archaea in coastal marine environments. Proc Natl Acad Sci USA, 89: 5685–5689CrossRef
    Eichinger M, Poggiale J C, Van Wambeke F, Lefevre D, Sempere R. 2006. Modelling DOC assimilation and bacterial growth efficiency in biodegradation experiments: A case study in the Northeast Atlantic Ocean. Aquat Microbial Ecol, 43: 139–151CrossRef
    Fernandes L, Garg A, Borole D V. 2014. Amino acid biogeochemistry and bacterial contribution to sediment organic matter along the western margin of the Bay of Bengal. Deep-Sea Res Part I: Oceanogr Res Pap, 83: 81–92CrossRef
    Flemming H C, Wingender J. 2010. The biofilm matrix. Nature Rev Microbiol, 8: 623–633
    Forsum O, Svennerstam H, Ganeteg U, Näsholm T. 2008. Capacities and constraints of amino acid utilization in Arabidopsis. New Phytol, 179: 1058–1069
    Gehlen M. 2006. Reconciling surface ocean productivity, export fluxes and sediment composition in a global biogeochemical ocean model. Biogeosciences, 3: 521–537CrossRef
    Giovannoni S, Rappé M. 2000. Evolution, diversity, and molecular ecology of marine prokaryotes. In: Kirchman D, ed. Microbial Ecology of the Oceans. New York: Wiley. 47–84
    Gördes D, Kolukisaoglu Ü, Thurow K. 2011. Uptake and conversion of D-amino acids in Arabidopsis thaliana. Amino Acids, 40: 553–563CrossRef
    Halvorson H O, Spiegelman S. 1952. The inhibition of enzyme formation by amino acid analogues. J Bacteriol, 64: 207–221
    Herndl G J, Reinthaler T, Teira E, Aken H M V, Veth C, Pernthaler A, Pernthaler J. 2005. Contribution of Archaea to total prokaryotic production in the deep Atlantic Ocean. Appl Environ Microbiol, 72: 2303–2309CrossRef
    Hertkorn N, Benner R, Frommberger M, Schmitt-Kopplin P, Witt M, Kaiser K, Kettrup A, Hedges J I. 2006. Characterization of a major refractory component of marine dissolved organic matter. Geochim Cosmochim Acta, 70: 2990–3010CrossRef
    Hill P W, Quilliam R S, DeLuca T H, Farrar J, Farrell M, Roberts P, Newsham K K, Hopkins D W, Bardgett R D, Jones D L. 2011. Acquisition and assimilation of nitrogen as peptide-bound and D-enantiomers of amino acids by wheat. PLoS One, 6: e19220
    Hills G. 1949. Chemical factors in the germination of spore-bearing aerobes. The effects of amino-acids on the germination of Bacillus anthracis, with some observations on the relation of optical form to biological activity. Biochem J, 45: 363CrossRef
    Hochbaum A I, Kolodkin-Gal I, Foulston L, Kolter R, Aizenberg J, Losick R. 2011. Inhibitory effects of D-amino acids on Staphylococcus aureus biofilm development. J Bacteriol, 193: 5616–5622CrossRef
    Huang Y, Nishikawa T, Satoh K, Iwata T, Fukushima T, Homma H, Imai K. 1998. Urinary excretion of D-serine in human: Comparison of different ages and species. Biol Pharm Bull, 21: 156CrossRef
    Jensen P, Fenical W. 1995. The relative abundance and seawater requirements of Gram-positive bacteria in near-shore tropical marine samples. Microb Ecol, 29: 249–257CrossRef
    Jiao N, Herndl G J, Hansell D A, Benner R, Kattner G, Wilhelm S W, Kirchman D L, Weinbauer M G, Luo T, Chen F, Azam F. 2010. Microbial production of recalcitrant dissolved organic matter: Long-term carbon storage in the global ocean. Nature Rev Microbiol, 8: 593–599CrossRef
    Jørgensen N O G, Stepanaukas R, Pedersen A G U, Hansen M, Nybroe O. 2003. Occurrence and degradation of peptidoglycan in aquatic environments. FEMS Microbiol Ecol, 46: 269–280CrossRef
    Jørgensen N O G, Middelboe M. 2006. Occurrence and bacterial cycling of D-amino acid isomers in an estuarine environment. Biogeochemistry, 81: 77–94CrossRef
    Kaiser K, Benner R. 2008. Major bacterial contribution to the ocean reservoir of detrital organic carbon and nitrogen. Limnol Oceanogr, 53: 99–112CrossRef
    Kandler O, König H. 1978. Chemical composition of the peptidoglycanfree cell walls of methanogenic bacteria. Arch Microbiol, 118: 141–152CrossRef
    Kandler O, König H. 1998. Cell wall polymers in Archaea (Archaebacteria). Cell Mol Life Sci, 54: 305–308CrossRef
    Karatan E, Watnick P. 2009. Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev, 73: 310–347CrossRef
    Karner M B, DeLong E F, Karl D M. 2001. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature, 409: 507–510CrossRef
    Kawai Y, Ishii Y, Arakawa K, Uemura K, Saitoh B, Nishimura J, Kitazawa H, Yamazaki Y, Tateno Y, Itoh T. 2004. Structural and functional differences in two cyclic bacteriocins with the same sequences produced by lactobacilli. Appl Environ Microbiol, 70: 2906–2911CrossRef
    Kawasaki N, Benner R. 2006. Bacterial release of dissolved organic matter during cell growth and decline: Molecular origin and composition. Limnol Oceanogr, 51: 2170–2180CrossRef
    Kim P M, Duan X, Huang A S, Liu C Y, Ming G L, Song H, Snyder S H. 2010. Aspartate racemase, generating neuronal D-aspartate, regulates adult neurogenesis. Proc Natl Acad Sci USA, 107: 3175–3179CrossRef
    Kolodkin-Gal I, Romero D, Cao S, Clardy J, Kolter R, Losick R. 2010. D-amino acids trigger biofilm disassembly. Science, 328: 627–629CrossRef
    Könneke M, Bernhard A E, José R, Walker C B, Waterbury J B, Stahl D A. 2005. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature, 437: 543–546CrossRef
    Lam H, Oh D C, Cava F, Takacs C N, Clardy J, de Pedro M A, Waldor M K. 2009. D-Amino acids govern stationary phase cell wall remodeling in bacteria. Science, 325: 1552–1555CrossRef
    Lee C, Bada J L. 1977. Dissolved amino acids in the equatorial Pacific, the Sargasso Sea, and Biscayne Bay. Limnol Oceanogr, 22: 502–510CrossRef
    Li C, Yao X, Lu C D. 2009. Regulation of the dauBAR operon and characterization of D-amino acid dehydrogenase DauA in arginine and lysine catabolism of Pseudomonas aeruginosa PAO1. Microbiology, 156: 60–71CrossRef
    Lomstein B A, Jorgensen B B, Schubert C J, Niggemann J. 2006. Amino acid biogeo- and stereochemistry in coastal Chilean sediments. Geochim Cosmochim Acta, 70: 2970–2989CrossRef
    Matsumoto M, Homma H, Long Z, Imai K, Iida T, Maruyama T, Aikawa Y, Endo I, Yohda M. 1999. Occurrence of free D-amino acids and aspartate racemases in hyperthermophilic Archaea. J Bacteriol, 181: 6560–6563
    McCarthy M D, Hedges J I, Benner R. 1998. Major bacterial contribution to marine dissolved organic nitrogen. Science, 281: 231–234CrossRef
    Miyoshi Y, Konno R, Sasabe J, Ueno K, Tojo Y, Mita M, Aiso S, Hamase K. 2012. Alteration of intrinsic amounts of D-serine in the mice lacking serine racemase and D-amino acid oxidase. Amino acids, 43: 1919–1931CrossRef
    Moriarty D, Hayward A. 1982. Ultrastructure of bacteria and the proportion of Gram-negative bacteria in marine sediments. Microb Ecol, 8: 1–14CrossRef
    Morikawa M, Daido H, Takao T, Murata S, Shimonishi Y, Imanaka T. 1993. A new lipopeptide biosurfactant produced by Arthrobacter sp. strain MIS38. J Bacteriol, 175: 6459–6466
    Nagata T, Meon B, Kirchman D. 2003. Microbial degradation of peptidoglycan in seawater. Limnol Oceanogr, 48: 745–754CrossRef
    Nagata Y, Tanaka K, Iida T, Kera Y, Yamada R H, Nakajima Y, Fujiwara T, Fukumori Y, Yamanaka T, Koga Y. 1999. Occurrence of D-amino acids in a few archaea and dehydrogenase activities in hyperthermophile Pyrobaculum islandicum. Biochim Biophys Acta, 1435: 160–166CrossRef
    Ogawa H, Tanoue E. 2003. Dissolved organic matter in oceanic waters. J Oceanogr, 59: 129–147CrossRef
    Ohnishi M, Saito M, Wakabayashi S, Ishizuka M, Nishimura K, Nagata Y, Kasai S. 2008. Purification and characterization of serine racemase from a hyperthermophilic archaeon, Pyrobaculum islandicum. J Bacteriol, 190: 1359–1365CrossRef
    Pedersen A-GU, Thomsen T R, Lomstein B A, Jørgensen N O G. 2001. Bacterial influence on amino acid enantiomerization in a coastal marine sediment. Limnol Oceanogr, 46: 1358–1369CrossRef
    Ravenschlag K, Sahm K, Amann R. 2001. Quantitative molecular analysis of the microbial community in marine Arctic sediments (Svalbard). Appl Environ Microbiol, 67: 387–395CrossRef
    Reeburgh W S. 1997. Figures summarizing the global cycles of biogeochemically important elements. Bull Ecol Soc Am, 78: 260–267
    Rydon H. 1947. D-amino acids in microbiological chemistry. Biochem J, 41: xxxvi
    Schleifer K H, Kandler O. 1972. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev, 36: 407
    Snyder S H, Kim P M. 2000. D-amino acids as putative neurotransmitters: Focus on D-serine. Neurochem Res, 25: 553–560CrossRef
    Vollmer W, Blanot D, De Pedro M A. 2008. Peptidoglycan structure and architecture. FEMS Microbiol Rev, 32: 149–167CrossRef
    Xu H J, Liu Y. 2011. Reduced microbial attachment by D-amino acid-inhibited AI-2 and EPS production. Water Res, 45: 5796–5804CrossRef
    Yokoyama T, Kan-no N, Ogata T, Kotaki Y, Sato M, Nagahisa E. 2003. Presence of free D-amino acids in microalgae. Biosci Biotechnol Biochem, 67: 388CrossRef
    Yoshimura T, Esak N. 2003. Amino acid racemases: Functions and mechanisms. J Biosci Bioeng, 96: 103–109CrossRef
    Zhang G, Sun H J. 2014. Racemization in reverse: Evidence that D-amino acid toxicity on earth is controlled by bacteria with racemases. PLoS One, 9: e92101
    Zhang Y, Sintes E, Chen J, Dai M, Jiao N, Herndl G J. 2009. Role of mesoscale cyclonic eddies in the distribution and activity of Archaea and Bacteria in the South China Sea. Aquat Microb Ecol, 56: 65–79CrossRef
    Zhang Z, Li Z, Jiao N. 2014. Effect of D-amino acids of the EPS production and cell aggregation of Alteromonas macleodii stain JL2069. Curr Microbiol, 68: 751–755CrossRef
    Zhuang R, Chen H, Yao J, Li Z, Burnet J E, Choi M M F. 2011. Impact of beta-cypermethrin on soil microbial community associated with its bioavailability: A combined study by isothermal microcalorimetry and enzyme assay techniques. J Hazard Mater, 189: 323–328CrossRef
    Zobell C E. 1946. Marine Microbiology, A monograph on Hydrobacteriology. Waltham: Chronica Botanica Press
  • 作者单位:ZiLian Zhang (1)
    Qiang Zheng (1)
    NianZhi Jiao (1)

    1. State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, 361005, China
  • 刊物主题:Earth Sciences, general;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1869-1897
文摘
In nature, there are two conformational types of amino acids: L- and D-isomers. The L-amino acids are the predominant form and are used mainly for protein synthesis, while the D-amino acids are few in quantity but more diverse in terms of their biological functions. D-amino acids are produced by many marine microbes, which are important players in carbon and energy cycles in the ocean. As the major constituent of the marine organic carbon pool, D-amino acids can persist in the water column for a long time before being further transformed by chemical or biological processes or transported through physical processes (such as absorption and aggregation). This article reviews the microbial synthesis of D-amino acids, their physiological function and metabolism in microbes, and the contribution of D-amino acids as a carbon source to the oceanic carbon reservoir.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700