用户名: 密码: 验证码:
Enrichment of Anammox Biomass from Different Seeding Sludge: Process Strategy and Microbial Diversity
详细信息    查看全文
  • 作者:Zhiji Ding ; Valeria Ventorino ; Antonio Panico ; Olimpia Pepe…
  • 关键词:Nitrogen ; Anammox ; Ammonium ; Nitrite
  • 刊名:Water, Air, & Soil Pollution
  • 出版年:2017
  • 出版时间:January 2017
  • 年:2017
  • 卷:228
  • 期:1
  • 全文大小:
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment, general; Water Quality/Water Pollution; Atmospheric Protection/Air Quality Control/Air Pollution; Soil Science & Conservation; Hydrogeology; Climate Change/Climate Change Impacts;
  • 出版者:Springer International Publishing
  • ISSN:1573-2932
  • 卷排序:228
文摘
The current study aims to tackle one of the main obstacles in the application of anaerobic ammonium oxidation (Anammox) technology, i.e., the extreme slow growth of the Anammox bacteria. Three conventional sludge has been tested in sequencing batch reactor for Anammox enrichment, including conventional aerobic sludge, denitrification sludge, and anaerobic sludge. With a high selection stress and insufficient oxygen control, the reactor seeded with aerobic sludge reached 50–60% total nitrogen removal after 240 days whereas that seeded with anaerobic sludge failed to establish Anammox activity. Anammox process was successfully established in the reactor seeded with denitrification sludge with a total nitrogen removal of approximately 80% after 150 days under strict oxygen control (DO <0.2 mg/L) and low selection stress. Under the same operational condition, the reactor seeded with anaerobic sludge reached only 20–30% total nitrogen removal. All the reactors experienced fluctuating performances during the enrichment process, which was believed to be the consequence of inhibitory factors such as dissolved oxygen, nitrite and free ammonia as well as undesirable coexisting bacteria which compete for the same substrate. The denaturing gradient gel electrophoresis (DGGE) band from the amplified DNA samples extracted from different enrichment stage showed a clear evolution of the microbial composition as reflected by the change in the band locations and their intensity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700