用户名: 密码: 验证码:
Matryoshka-caged gold nanorods: Synthesis, plasmonic properties, and catalytic activity
详细信息    查看全文
  • 作者:Wei Xiong ; Debabrata Sikdar ; Lim Wei Yap ; Pengzhen Guo ; Malin Premaratne…
  • 关键词:matryoshka ; caged gold nanorods ; galvanic replacement reaction ; 4 ; nitrophenol ; catalysis ; surface plasmon resonance
  • 刊名:Nano Research
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:9
  • 期:2
  • 页码:415-423
  • 全文大小:2,933 KB
  • 参考文献:[1]Halas, N. J.; Lal, S.; Chang, W.-S.; Link, S.; Nordlander, P. Plasmons in strongly coupled metallic nanostructures. Chem. Rev. 2011, 111, 3913–3961.CrossRef
    [2]Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P. Biosensing with plasmonic nanosensors. Nat. Mater. 2008, 7, 442–453.CrossRef
    [3]Rycenga, M.; Cobley, C. M.; Zeng, J.; Li, W. Y.; Moran, C. H.; Zhang, Q.; Qin, D.; Xia, Y. N. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 2011, 111, 3669–3712.CrossRef
    [4]Ye, X. C.; Jin, L. H.; Caglayan, H.; Chen, J.; Xing, G. Z.; Zheng, C.; Doan-Nguyen, V.; Kang, Y. J.; Engheta, N.; Kagan, C. R. et al. Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives. ACS Nano 2012, 6, 2804–2817.CrossRef
    [5]Reddy, N. K.; Pérez-Juste, J.; Pastoriza-Santos, I.; Lang, P. R.; Dhont, J. K. G.; Liz-Marzán, L. M.; Vermant, J. Flow dichroism as a reliable method to measure the hydrodynamic aspect ratio of gold nanoparticles. ACS Nano 2011, 5, 4935–4944.CrossRef
    [6]Lohse, S. E.; Eller, J. R.; Sivapalan, S. T.; Plews, M. R.; Murphy, C. J. A simple millifluidic benchtop reactor system for the high-throughput synthesis and functionalization of gold nanoparticles with different sizes and shapes. ACS Nano 2013, 7, 4135–4150.CrossRef
    [7]Tan, S. J.; Campolongo, M. J.; Luo, D.; Cheng, W. L. Building plasmonic nanostructures with DNA. Nat. Nano 2011, 6, 268–276.CrossRef
    [8]Wang, J. F.; Gong, J. X.; Xiong, Y. S.; Yang, J. D.; Gao, Y.; Liu, Y. L.; Lu, X. Q.; Tang, Z. Y. Shape-dependent electrocatalytic activity of monodispersed gold nanocrystals toward glucose oxidation. Chem. Commun. 2011, 47, 6894–6896.CrossRef
    [9]Tang, Y.; Cheng, W. L. Nanoparticle-modified electrode with size- and shape-dependent electrocatalytic activities. Langmuir 2013, 29, 3125–3132.CrossRef
    [10]Zhang, Q.; Guo, X.; Liang, Z. X.; Zeng, J. H.; Yang, J.; Liao, S. J. Hybrid PdAg alloy–Au nanorods: Controlled growth, optical properties and electrochemical catalysis. Nano Res. 2013, 6, 571–580.CrossRef
    [11]Fu, G. T.; Liu, Z. Y.; Chen, Y.; Lin, J.; Tang, Y. W.; Lu, T. H. Synthesis and electrocatalytic activity of Au@Pd core–shell nanothorns for the oxygen reduction reaction. Nano Res. 2014, 7, 1205–1214.CrossRef
    [12]Wang, C. L.; Astruc, D. Nanogold plasmonic photocatalysis for organic synthesis and clean energy conversion. Chem. Soc. Rev. 2014, 43, 7188–7216.CrossRef
    [13]Zhou, W.; Li, T.; Wang, J. Q.; Qu, Y.; Pan, K.; Xie, Y. H.; Tian, G. H.; Wang, L.; Ren, Z. Y.; Jiang, B. J. et al. Composites of small Ag clusters confined in the channels of well-ordered mesoporous anatase TiO2 and their excellent solar-light-driven photocatalytic performance. Nano Res. 2014, 7, 731–742.CrossRef
    [14]Jiang, R. B.; Li, B. X.; Fang, C. H.; Wang, J. F. Metal/semiconductor hybrid nanostructures for plasmon-enhanced applications. Adv. Mater. 2014, 26, 5274–5309.CrossRef
    [15]Thompson, D. T. Using gold nanoparticles for catalysis. Nano Today 2007, 2, 40–43.CrossRef
    [16]Song, M.; Park, J. H.; Kim, C. S.; Kim, D.-H.; Kang, Y.-C.; Jin, S.-H.; Jin, W.-Y.; Kang, J.-W. Highly flexible and transparent conducting silver nanowire/ZnO composite film for organic solar cells. Nano Res. 2014, 7, 1370–1379.CrossRef
    [17]Hutchings, G. J. Catalysis by gold. Catal. Today 2005, 100, 55–61.CrossRef
    [18]Wittstock, A.; Bäumer, M. Catalysis by unsupported skeletal gold catalysts. Acc. Chem. Res. 2014, 47, 731–739.CrossRef
    [19]Daniel, M.-C.; Astruc, D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2004, 104, 293–346.CrossRef
    [20]Min, B. K.; Friend, C. M. Heterogeneous gold-based catalysis for green chemistry: Low-temperature CO oxidation and propene oxidation. Chem. Rev. 2007, 107, 2709–2724.CrossRef
    [21]Hashmi, A. S. K. Gold-catalyzed organic reactions. Chem. Rev. 2007, 107, 3180–3211.CrossRef
    [22]Zeng, J.; Zhang, Q.; Chen, J. Y.; Xia, Y. N. A comparison study of the catalytic properties of Au-based nanocages, nanoboxes, and nanoparticles. Nano Lett. 2009, 10, 30–35.CrossRef
    [23]Mahmoud, M. A.; El-Sayed, M. A. Time dependence and signs of the shift of the surface plasmon resonance frequency in nanocages elucidate the nanocatalysis mechanism in hollow nanoparticles. Nano Lett. 2011, 11, 946–953.CrossRef
    [24]Gu, H.; Wang, J. N.; Ji, Y. C.; Wang, Z. Q.; Chen, W.; Xue, G. Facile and controllable fabrication of gold nanoparticlesimmobilized hollow silica particles and their high catalytic activity. J. Mater. Chem. A 2013, 1, 12471–12477.CrossRef
    [25]Wang, W.; Pang, Y. J.; Yan, J.; Wang, G. B.; Suo, H.; Zhao, C.; Xing, S. X. Facile synthesis of hollow urchin-like gold nanoparticles and their catalytic activity. Gold Bull. 2012, 45, 91–98.CrossRef
    [26]Mahmoud, M. A.; El-Sayed, M. A. Metallic double shell hollow nanocages: The challenges of their synthetic techniques. Langmuir 2012, 28, 4051–4059.CrossRef
    [27]Hong, S.; Acapulco, J. A. I.; Jang, H. Y.; Park, S. Au nanodisk-core multishell nanoparticles: Synthetic method for controlling number of shells and intershell distance. Chem. Mater. 2014, 26, 3618–3623.CrossRef
    [28]Xiong, W.; Sikdar, D.; Walsh, M.; Si, K. J.; Tang, Y.; Chen, Y.; Mazid, R.; Weyland, M.; Rukhlenko, I. D.; Etheridge, J. et al. Single-crystal caged gold nanorods with tunable broadband plasmon resonances. Chem. Commun. 2013, 49, 9630–9632.CrossRef
    [29]Lee, J.; Park, J. C.; Song, H. A nanoreactor framework of a Au@SiO2 yolk/shell structure for catalytic reduction of p-nitrophenol. Adv. Mater. 2008, 20, 1523–1528.CrossRef
    [30]Xiong, W.; Mazid, R.; Yap, L. W.; Li, X. Y.; Cheng, W. L. Plasmonic caged gold nanorods for near-infrared light controlled drug delivery. Nanoscale 2014, 6, 14388–14393.CrossRef
    [31]Sikdar, D.; Rukhlenko, I. D.; Cheng, W. L.; Premaratne, M. Tunable broadband optical responses of substrate-supported metal/dielectric/metal nanospheres. Plasmonics 2014, 9, 659–672.CrossRef
    [32]Sikdar, D.; Rukhlenko, I. D.; Cheng, W. L.; Premaratne, M. Effect of number density on optimal design of gold nanoshells for plasmonic photothermal therapy. Biomed. Opt. Express 2013, 4, 15–31.CrossRef
    [33]Hu, Y. X.; Liu, Y. Z.; Li, Z.; Sun, Y. G. Highly asymmetric, interfaced dimers made of Au nanoparticles and bimetallic nanoshells: Synthesis and photo-enhanced catalysis. Adv. Funct. Mater. 2014, 24, 2828–2836.CrossRef
    [34]Wang, J. H.; Yuan, Z. L.; Nie, R. F.; Hou, Z. Y.; Zheng, X. M. Hydrogenation of nitrobenzene to aniline over silica gel supported nickel catalysts. Ind. Eng. Chem. Res. 2010, 49, 4664–4669.CrossRef
    [35]Jain, P.; Pradeep, T. Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnol. Bioeng. 2005, 90, 59–63.CrossRef
  • 作者单位:Wei Xiong (1) (2) (3)
    Debabrata Sikdar (4)
    Lim Wei Yap (1) (2)
    Pengzhen Guo (1) (2)
    Malin Premaratne (4)
    Xinyong Li (3)
    Wenlong Cheng (1) (2)

    1. Department of Chemical Engineering, Monash University, Clayton, VIC, 3800, Australia
    2. The Melbourne Centre for Nanofabrication, 151 Wellington Road, Clayton, VIC, 3168, Australia
    3. Key Laboratory of Industrial Ecology and Environmental Engineering and State Key Laboratory of Fine Chemicals, School of Environmental Sciences and Technology, Dalian University of Technology, Dalian, 116024, China
    4. Advanced Computing and Simulation Laboratory (AχL), Department of Electrical and Computer Systems Engineering, Monash University, Clayton, VIC, 3800, Australia
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chinese Library of Science
    Chemistry
    Nanotechnology
  • 出版者:Tsinghua University Press, co-published with Springer-Verlag GmbH
  • ISSN:1998-0000
文摘
Matryoshka-caged gold nanorods (mCGNRs) were successfully synthesized by alternating between a seed-mediated silver-coating method and galvanic replacement reactions (GRRs). As the number of matryoshka layers of the mCGNRs increased, the plasmon resonance peak broadened and was red-shifted, and the catalytic activity towards the reduction of 4-nitrophenol (4-NTP) increased. When mCGNRs with 6 layers were used as nanocatalysts in the reduction of 4-nitrophenol, the reaction rate coefficient was 5.2- and 3.7-times higher than that of the gold-nanorod- and caged-gold-nanorod-catalyzed reductions of 4-nitrophenol, respectively. In addition, the surface-plasmon-resonance-based absorption of light enhanced the catalytic performance of the mCGNRs. With the support of a polyurethane foam, the mCGNRs synthesized in this study can be applied as recyclable heterogeneous catalysts for the reduction of 4-nitrophenol.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700