用户名: 密码: 验证码:
Nonlinear dynamic analysis of electrically actuated viscoelastic bistable microbeam system
详细信息    查看全文
文摘
Viscoelastic phenomena widely exist in MEMS materials, which may have certain effects on transition mechanism of nonlinear jumping phenomena and transient chaotic behaviors. This article aims to theoretically investigate the static and dynamic characteristics of electrically actuated viscoelastic bistable microbeam via a low-dimensional model. An improved single-degree-of-freedom model to describe microbeam-based resonators is obtained by using Fractional Kelvin constitutive model, Hamilton’s principle and Galerkin method. Through static bifurcation analysis, three kinds of parameter conditions of the bistable system are obtained, and potential energy function of the Hamiltonian system is theoretically derived. The influence of fractional viscoelasticity on dynamic pull-in phenomena is distinguished from the viewpoint of energy. Then, the method of multiple scales is applied to determine the response and stability of the system for small vibration amplitude and AC voltage. The influence of fractional viscoelasticity on amplitude, frequency and bifurcation behavior is investigated. Results show that compared with the elastic material, nonlinear phenomenon becomes weak, resonance frequency increases and amplitude decreases in the viscoelastic system. Besides, the numerical discretization method of fractional derivative is given to verify theoretical results. To study the influence of fractional viscoelasticity on complicated vibration, Melnikov method is applied to predict the existence of chaos, and numerical simulation is carried out to find the stable regions, chaotic regions and dynamic pull-in regions by using bifurcation diagrams with local maximum method. Rational increase in material modulus ratio parameter and fractional order is effective to reduce the possibility of chaos and dynamic pull-in. This analysis has the potential of developing parameter design in MEMS.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700