用户名: 密码: 验证码:
A Dynamical System Approach for Continuous Nonnegative Matrix Factorization
详细信息    查看全文
文摘
Nonnegative matrix factorization is a linear dimensionality reduction technique used for decomposing high-dimensional nonnegative data matrices for extracting basic and latent features. This technique plays fundamental roles in music analysis, signal processing, sound separation, and spectral data analysis. Given a time-varying objective function or a nonnegative time-dependent data matrix Y(t), the nonnegative factors of Y(t) can be obtained by taking the limit points of the trajectories of the corresponding ordinary differential equations. When the data are time dependent, it is natural to devise factorization techniques that capture the time dependency. To achieve this, one needs to solve continuous-time dynamical systems derived from iterative optimization schemes and construct nonnegative matrix factorization algorithms based on the solution curves. This article presents continuous nonnegative matrix factorization methods based on the solution of systems of ordinary differential equations associated with time-dependent data. In particular, we propose two new continuous-time algorithms based on the Kullback–Leibler divergence and the Amari \(\alpha \)-divergence.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700