用户名: 密码: 验证码:
How Selected Tissues of Lactating Holstein Cows Respond to Dietary Polyunsaturated Fatty Acid Supplementation
详细信息    查看全文
  • 作者:Beate Hiller (1)
    Joaquin Angulo (2)
    Martha Olivera (2)
    Gerd Nuernberg (1)
    Karin Nuernberg (1)
  • 关键词:Dairy cattle ; Lactation ; Lipid supplementation ; Tissue metabolism ; Lipid homeostasis
  • 刊名:Lipids
  • 出版年:2013
  • 出版时间:April 2013
  • 年:2013
  • 卷:48
  • 期:4
  • 页码:357-367
  • 全文大小:378KB
  • 参考文献:1. Dodson MV, Hausman GJ, Guan L, Du M, Rasmussen TP, Poulos SP, Mir P, Bergen WG, Fernyhough ME, McFarland DC, Rhoads RP, Soret B, Reecy JM, Velleman SG, Jiang Z (2010) Lipid metabolism, adipocyte depot physiology and utilization of meat animals as experimental models for metabolic research. Int J Biol Sci 6:691-99 CrossRef
    2. Greenwood PL, Café LM (2007) Prenatal and preweaning growth and nutrition of cattle: longterm consequences for beef production. Animal 1:1283-296 CrossRef
    3. Bach A (2012) Ruminant nutrition symposium: modulation of metabolism through nutrition and management. J Animal Sci 90:1833-834 CrossRef
    4. Robinson RS, Pushpakumara PGA, Cheng Z, Peters AR, Abayasekara DRE, Wathes DC (2002) Effects of dietary polyunsaturated fatty acids on ovarian and uterine function in lactating dairy cows. Reprod 124:119-31 CrossRef
    5. Jaquiery AL, Oliver MH, Honeyfield-Ross M, Harding JE, Bloomfield FH (2012) Periconceptional undernutrition in sheep affects adult phenotype only in males. J Nutr Metab 2012:123610. doi:10.1155/2012/123610
    6. Van Saun RJ, Sniffen CJ (1996) Nutritional management of the pregnant dairy cow to optimize health, lactation and reproductive performance. Animal Feed Sci Technol 59:13-6 CrossRef
    7. Rhoads ML, Rhoads RP, VanBaale MJ, Collier RJ, Sanders SR, Weber WJ, Crooker BA, Baumgard LH (2009) Effects of heat stress and plane of nutrition on lactating Holstein cows: I. Production, metabolism, and aspects of circulating somatotropin. J Dairy Sci 92:1986-997 CrossRef
    8. Ingvartsen KL, Moyes K (2012) Nutrition, immune function and health of dairy cattle. Animal 24:1-1
    9. Schingoethe DJ, Brouk MJ, Lightfield KD, Baer RJ (1996) Lactational responses of dairy cows fed unsaturated fat from extruded soybeans or sunflower seeds. J Dairy Sci 79:1244-249 CrossRef
    10. Sklan D, Kaim M, Moallem U, Folman Y (1994) Effect of dietary calcium soaps on milk yield, body weight, reproductive hormones, and fertility in first parity and older cows. J Dairy Sci 77:1652-666 CrossRef
    11. Theurer ML, Block E, Sanchez WK, McGuire MA (2009) Calcium salts of polyunsaturated fatty acids deliver more essential fatty acids to the lactating dairy cow. J Dairy Sci 92:2051-056 CrossRef
    12. Angulo J, Hiller B, Albrecht E, Olivera M, Mahecha L, Nuernberg G, Dannenberger D, Nuernberg K (2012) Effect of different dietary fats on protein expression of sterol regulatory element-binding protein 1 (SREBP-1) in mammary gland tissue of lactating cows. Livestock Sci 143:300-04 CrossRef
    13. Loor JJ, Ferlay A, Ollier A, Doreau M, Chilliard Y (2005) Relationship among trans and conjugated fatty acids and bovine milk fat yield due to dietary concentrate and linseed oil. J Dairy Sci 88:726-40 CrossRef
    14. Fearon AM, Mayne CS, Beattie JAM, Bruce DW (2004) Effect of level of oil inclusion in the diet of dairy cows at pasture on animal performance and milk composition and properties. J Sci Food Agric 84:497-04 CrossRef
    15. Shingfield KJ, Reynolds CK, Lupoli B, Toivonen V, Yurawecz MP, Delmonte P, Griinari JM, Grandison AS, Beever DE (2005) Effect of forage type and proportion of concentrate in the diet on milk fatty acid composition in cows given sunflower oil and fish oil. Animal Sci 80:225-38
    16. Dewhurst RJ, Shingfield KJ, Lee MRF, Scollan ND (2006) Increasing the concentrations of beneficial polyunsaturated fatty acids in milk produced by dairy cows in high-forage systems. Animal Feed Sci Technol 131:168-06 CrossRef
    17. Shingfield KJ, Saeb? A, Saeb? PC, Toivonen V, Griinari JM (2009) Effect of abomasal infusions of a mixture of octadecenoic acids on milk fat synthesis in lactating cows. J Dairy Sci 92:4317-329 CrossRef
    18. Perfield JW, Lock AL, Griinari JM, Saeb? A, Delmonte P, Dwyer DA, Bauman DE (2007) Trans-9, cis-11 conjugated linoleic acid reduces milk fat synthesis in lactating dairy cows. J Dairy Sci 90:2211-218 CrossRef
    19. Harvatine KJ, Bauman DE (2011) Characterization of the acute lactational response to trans-10, cis-12 conjugated linoleic acid. J Dairy Sci 94:6047-056 CrossRef
    20. Becú-Villalobos D, García-Tornadú I, Shroeder G, Salado EE, Gagliostro G, Delavaud C, Chilliard Y, Lacau-Mengido IM (2007) Effect of fat supplementation on leptin, insulin-like growth factor I, growth hormone, and insulin in cattle. Can J Vet Res 71:218-25
    21. Butler WR (2000) Nutritional interactions with reproductive performance in dairy cattle. Animal Reprod Sci 60:449-57 CrossRef
    22. Lessard M, Gagnon N, Petit HV (2003) Immune response of postpartum dairy cows fed flaxseed. J Dairy Sci 86:2647-657 CrossRef
    23. Hiller B, Herdmann A, Nuernberg K (2011) Dietary n-3 fatty acids significantly suppress lipogenesis in bovine muscle and adipose tissue: a functional genomics approach. Lipids 46:557-67 CrossRef
    24. Herdmann A, Nuernberg K, Martin J, Nuernberg G, Doran O (2010) Effect of dietary fatty acids on expression of lipogenic enzymes and fatty acid profile in tissues of bulls. Animal 4:755-62 CrossRef
    25. Hiller B, Hocquette JF, Cassar-Malek I, Nuernberg G, Nuernberg K (2012) Dietary n-3 polyunsaturated fatty acids affect lipid metabolism and tissue function related genes in bovine muscle. Br J Nutr 108:858-63 CrossRef
    26. Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST?) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:1-0 CrossRef
    27. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497-09
    28. Dannenberger D, Nuernberg G, Scollan N, Schabbel W, Steinhart H, Ender K, Nuernberg K (2004) Effect of diet on the deposition of n-3 fatty acids conjugated linoleic- and C18:1 trans fatty acid isomers in muscle lipids of German Holstein bulls. J Agric Food Chem 52:6607-615 CrossRef
    29. SAS Institute Inc (2009) SAS/STAT? 9.2, User’s Guide, 2nd edn. SAS Institute Inc, Cary
    30. Angulo J, Mahecha L, Nuernberg K, Nuernberg G, Dannenberger D, Olivera M, Boutinaud M, Leroux C, Albrecht E, Bernard E (2012) Effects of polyunsaturated fatty acids from plant oils and algae on milk fat yield and composition are associated with mammary lipogenic and SREBF1 gene expression. Animal. doi:10.1017/S1751731112000845
    31. Thering BJ, Graugnard DE, Piantoni P, Loor JJ (2009) Adipose tissue lipogenic gene networks due to lipid feeding and milk fat depression in lactating cows. J Dairy Sci 92:4290-300 CrossRef
    32. Caldari-Torres C, Lock AL, Staples CR, Badinga L (2011) Performance, metabolic, and endocrine responses of periparturient Holstein cows fed 3 sources of fat. J Dairy Sci 94:1500-510 CrossRef
    33. Baik M, Etchebarne BE, Bong J, VandeHaar MJ (2009) Gene expression profiling of liver and mammary tissues of lactating dairy cows. Asian Austral J Animal Sci 6:871-84
    34. Loor JJ (2010) Genomics of metabolic adaptations in the peripartal cow. Animal 4:1110-139 CrossRef
    35. Hoggard N, Cruickshank M, Moar KM, Bashir S, Mayer CD (2012) Using gene expression to predict differences in the secretome of human omental versus subcutaneous adipose tissue. Obes. doi:10.1038/oby.2012.14
    36. Harvatine KJ, Perfield JW, Bauman DE (2009) Expression of enzymes and key regulators of lipid synthesis is up-regulated in adipose tissue during CLA-induced milk fat depression in dairy cows. J Nutr 139:849-54 CrossRef
    37. Pérez-Echarri N, Pérez-Matute P, Marcos-Gómez B, Marti A, Martínez JA, Moreno-Aliaga MJ (2009) Down-regulation in muscle and liver lipogenic genes: EPA ethyl ester treatment in lean and overweight (high-fat-fed) rats. J Nutr Biochem 20:705-14 CrossRef
    38. Kim H, Choi S, Lee H-J, Lee J-H, Choi H (2003) Suppression of fatty acid synthase by dietary polyunsaturated fatty acids is mediated by fat itself, not by peroxidative mechanism. J Biochem Molec Biol 36:258-64 CrossRef
    39. Ward RE, Woodward B, Otter N, Doran O (2010) Relationship between the expression of key lipogenic enzymes, fatty acid composition, and intramuscular fat content of Limousin and Aberdeen Angus cattle. Livestock Sci 127:22-9 CrossRef
    40. Cánovas A, Estany J, Tor M, Pena RN, Doran O (2009) Acetyl-CoA carboxylase and stearoyl-CoA desaturase protein expression in subcutaneous adipose tissue is reduced in pigs selected for decreased backfat thickness at constant intramuscular fat content. J Animal Sci 87:3905-914 CrossRef
    41. Pullen DL, Liesman JS, Emery RS (1990) A species comparison of liver slice synthesis and secretion of triacylglycerol from nonesterified fatty acids in media. J Animal Sci 68:1395-399
    42. Kokta TA, Dodson MV, Gertler A, Hill RA (2004) Intercellular signalling between adipose tissue and muscle tissue. Domest Animal Endocrinol 27:303-31 CrossRef
    43. Eguinoa P, Brocklehurst S, Arana A, Mendizabal JA, Vernon RG, Purroy A (2003) Lipogenic enzyme activities in different adipose depots of Pirenaican and Holstein. J Animal Sci 81:432-40
    44. Ingle DL, Bauman DE, Garrigus US (1972) Lipogenesis in the ruminant: in vivo site of fatty acid synthesis in sheep. J Nutr 102:617-24
    45. Dutta-Roy AK (2000) Cellular uptake of long-chain fatty acids: role of membrane-associated fatty-acid-binding/transport proteins. Cell Mol Life Sci 57:1360-372 CrossRef
    46. Summers LKM, Barnes SC, Fielding BA, Beysen C, Ilic V, Humphreys SM, Frayn KN (2000) Uptake of individual fatty acids into adipose tissue in relation to their presence in the diet. Am J Clin Nutr 71:1470-477
    47. Chilliard Y, Robelin J (1985) Activity of lipoprotein lipase in different adipose deposits and its relation to adipocyte size in the cow during fattening or early lactation. Reprod Nutr Dev 25:287-93 CrossRef
    48. Frayn KN (2000) Visceral fat and insulin resistance: causative or correlative? Br J Nutr 83:721S-25S CrossRef
    49. Garaulet M, Pérez-Llamas F, Pérez-Ayala M, Martínez P, de Medina FS, Tebar FJ, Zamora S (2001) Site-specific differences in the fatty acid composition of abdominal adipose tissue in an obese population from a Mediterranean area: relation with dietary fatty acids, plasma lipid profile, serum insulin, and central obesity. Am J Clin Nutr 74:585-91
    50. Kloeting N, Berthold S, Kovacs P, Schoen MR, Fasshauer M, Ruschke K, Stumvoll M, Blueher M (2009) MicroRNA expression in human omental and subcutaneous adipose tissue. PLoS ONE 4:e4699 CrossRef
  • 作者单位:Beate Hiller (1)
    Joaquin Angulo (2)
    Martha Olivera (2)
    Gerd Nuernberg (1)
    Karin Nuernberg (1)

    1. Research Units Muscle Biology and Growth and Genetics and Biometry, Leibniz Institute for Farm Animal Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
    2. Group Grica, Faculty of Agricultural Science, University of Antioquia, AA 1226, Medellín, Colombia
  • ISSN:1558-9307
文摘
The effect of a 10-week supplementation with polyunsaturated fatty acids [via sunflower oil/DHA-rich algae (SUNA) or linseed oil/DHA-rich algae (LINA) enriched diets] versus saturated fatty acids (SAT) of lactating German Holstein dairy cows in mid-lactation on expression patterns of lipid metabolism-associated genes and gene products in hepatic, longissimus muscle and subcutaneous/perirenal/omental adipose tissue was assessed. Most pronounced transcriptomic responses to dietary PUFA were obtained in hepatic [down-regulated ACACA (FC?=?0.83, SUNA; FC?=?0.86, LINA), FADS1 (FC?=?0.60, SUNA; FC?=?0.72, LINA), FADS2 (FC?=?0.64, SUNA; FC?=?0.79, LINA), FASN (FC?=?0.64, SUNA; FC?=?0.72, LINA), SCD (FC?=?0.37, SUNA; FC?=?0.47, LINA) and SREBF1 (FC?=?0.79, SUNA, LINA) expression] and omental adipose [up-regulated ACACA (FC?=?1.58, SUNA; FC?=?1.22, LINA), ADFP (FC?=?1.33, SUNA; FC?=?1.32, LINA), CEBPA (FC?=?1.75, SUNA; FC?=?1.40, LINA), FASN (FC?=?1.57, SUNA; FC?=?1.21, LINA), LPL (FC?=?1.50, SUNA; FC?=?1.20, LINA), PPARG (FC?=?1.36, SUNA; FC?=?1.12, LINA), SCD (FC?=?1.41, SUNA; FC?=?1.17, LINA) and SREBF1 (FC?=?1.56, SUNA; FC?=?1.18, LINA) expression] tissue. Interestingly, gene/gene product associations were comparatively low in hepatic and omental adipose tissue compared with longissimus muscle, perirenal adipose and subcutaneous adipose tissue, indicating matches only in regard to minor concentrations of SCD product 18:1c9, FADS1 product 20:4n-6 and FADS2 product 18:3n-6 in hepatic tissue, and higher concentrations of ACACA and FASN gene products 12:0 and 14:0 and SCD product 18:2c9,t11 in omental adipose tissue. Whereas all analyzed tissues accumulated dietary PUFA and their ruminally generated biohydrogenation products, tissue-divergent preferences for certain fatty acids were identified. This descriptive study reports tissue-divergent effects of dietary PUFA and outlines the significance of a PUFA intervention with regard to dairy cows-nutritional management.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700