用户名: 密码: 验证码:
Thermal decomposition of polyhedral oligomeric octaphenyl, octa(nitrophenyl), and octa(aminophenyl) silsesquioxanes
详细信息    查看全文
  • 作者:Haibo Fan (1) (2)
    Rongjie Yang (1) (2)
  • 关键词:Degradation ; Octaphenylsilsesquioxane ; Octa(nitrophenyl)silsesquioxane ; Octa(aminophenyl)silsesquioxane
  • 刊名:Journal of Thermal Analysis and Calorimetry
  • 出版年:2014
  • 出版时间:April 2014
  • 年:2014
  • 卷:116
  • 期:1
  • 页码:349-357
  • 全文大小:2,079 KB
  • 参考文献:1. Lickiss PD, Rataboul F. Advances in organometallic chemistry. Adv Organomet Chem. 2008;57:1-16.
    2. Laine RM, Roll MF. Polyhedral phenylsilsesquioxanes. Macromolecules. 2011;44(5):1073-09. CrossRef
    3. Cordes DB, Lickiss PD, Rataboul F. Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem Rev. 2010;110:2081-73. CrossRef
    4. Blanco I, Abate L, Bottino FA, Bottino P, Chiacchio MA. Thermal degradation of differently substituted cyclopentyl polyhedral oligomeric silsesquioxane (CP-POSS) nanoparticles. J Therm Anal Calorim. 2012;107:1083-1. CrossRef
    5. Cho HS, Liang KW, Chatterjee S, Pittman CU. Synthesis, morphology, and viscoelastic properties of polyhedral oligomeric silsesquioxane nanocomposites with epoxy and cyanate ester matrices. J Inorg Organomet P. 2006;15:541-3. CrossRef
    6. Liu HZ, Zheng SX. Polyurethane networks nanoreinforced by polyhedral oligomeric silsesquioxane. Macromol Rapid Commun. 2005;26:196-00. CrossRef
    7. Guo HQ, Meador MA, McCorkle L. Polyimide aerogels cross-Linked through amine functionalized polyoligomeric silsesquioxane. ACS Appl Mater Interfaces. 2011;3:546-2. CrossRef
    8. Villanueva M, Martin-Iglesias JL, Rodriguez-Anon JA, Proupin-Castineiras J. Thermal study of an epoxy system DGEBA ( / n?=?0)/MXDA modified with POSS. J Therm Anal Calorim. 2009;96:575-2. CrossRef
    9. Ramasundaram SP, Kim KJ. In-situ synthesis and characterization of polyamide 6/POSS nanocomposites. Macromol Symp. 2007;249:295-02. CrossRef
    10. Chou CH, Hsu SL, Dinakaran K, Chiu MY, Wei KH. Synthesis and characterization of luminescent polyfluorenes incorporating side-chain-tethered polyhedral oligomeric silsesquioxane units. Macromolecules. 2005;38:745-1. CrossRef
    11. Iyer S, Schiraldi DA. Role of specific interactions and solubility in the reinforcement of bisphenol A polymers with polyhedral oligomeric silsesquioxanes. Macromolecules. 2007;40:4942-2. CrossRef
    12. Zhao YQ, Schiraldi DA. Thermal and mechanical properties of polyhedral oligomeric silsesquioxane (POSS)/polycarbonate composites. Polymer. 2005;46:11640-. CrossRef
    13. Blanco I, Abate L, Bottino FA. Variously substituted phenyl hepta cyclopentyl-polyhedral oligomeric silsesquioxane (ph, hcp-POSS)/polystyrene (PS) nanocomposites. J Therm Anal Calorim. 2013;112:421-. CrossRef
    14. Lu SY, Hamerton I. Recent developments in the chemistry of halogen-free flame retardant polymers. Prog Polym Sci. 2002;27:1661-2. CrossRef
    15. Jiang YY, Li XM, Yang RJ. Polycarbonate composites flame-retarded by polyphenylsilsesquioxane of ladder structure. J Appl Polym Sci. 2012;124:4381-. CrossRef
    16. Jiang YY, Zhang X, He JY, Li XM, Yang RJ. Effect of polyphenylsilsesquioxane on the ablative and flame-retardation properties of ethylene propylene diene monomer (EPDM) composite. Polym Degrad Stabil. 2011;96:949-4. CrossRef
    17. Zhang WC, Li XM, Yang RJ. Novel flame retardancy effects of DOPO-POSS on epoxy resins. Polym Degrad Stabil. 2011;96:2167-3. CrossRef
    18. Zhang WC, Li XM, Yang RJ. Pyrolysis and fire behaviour of epoxy resin composites based on a phosphorus-containing polyhedral oligomeric silsesquioxane (DOPO-POSS). Polym Degrad Stabil. 2011;96:1821-2. CrossRef
    19. Bolln C, Tsuchida A, Frey H, Ulhaupt RM. Thermal properties of the homologous series of eight fold alkyl-substituted octasilsesquioxanes. Chem Mater. 1997;9:1475-. CrossRef
    20. Mantz RA, Jones PF, Chaffee KP, Lichtenhan JD, Gilman JW. Thermolysis of polyhedral oligomeric silsesquioxane (POSS) macromers and POSS-siloxane copolymers. Chem Mater. 1996;8:1250-. CrossRef
    21. Fina A, Tabuani D, Camiato F, Frache A, Boccaleri E, Camino G. Polyhedral oligomeric silsesquioxanes (POSS) thermal degradation. Thermochim Acta. 2006;440:36-2. CrossRef
    22. Fina A, Tabuani D, Frache A, Boccaleri E, Camino G. Fire retardancy of polymers: new applications of mineral fillers. Cambridge: Royal Society of Chemistry; 2005.
    23. Fan HB, Li XM, Liu YL, Yang RJ. Thermal curing and degradation mechanism of polyhedral oligomeric octa(propargylaminophenyl)silsesquioxane. Polym Degrad Stabil. 2013;98:281-. CrossRef
    24. Fan HB, Yang RJ. Synthesis improvement and characterization of polyhedral oligomeric octa(aminophenyl)silsesquioxane. Polym Meter Sci Eng. 2012;28:144-.
    25. Fan HB, Yang RJ, Li XM. Purity analysis of polyhedral oligomeric octa(nitrophenyl)silsesquioxane. Acta Chim Sinica. 2012;70:1737-2. CrossRef
    26. Fan HB, Li DH, Yang RJ. Synthesis improvement and characterization of polyhedral oligomeric octa(aminophenyl)silsesquioxane. Acta Chim Sinica. 2012;70:429-5. CrossRef
    27. Fan HB, Yang RJ. Synthesis and characterization of polyhedral oligomeric azido-cctaphenylsilsesquioxane. J Appl Polym Sci. 2012;124:4389-7. CrossRef
    28. Fan HB, Yang RJ. Flame-retardant polyimide cross-linked with polyhedral oligomeric octa(aminophenyl)silsesquioxane. Ind Eng Chem Res. 2013;53:2493-00. CrossRef
    29. Chomel AD, Jayasooriya UA, Babonneau F. Solid state effects in the IR spectrum of octahydridosilasesquioxane. Spectrochim Acta Part A. 2004;60:1609-6. CrossRef
    30. Eklund PC, Golden JM, Jishi RA. Vibrational-modes of carbon nanotubes-spectroscopy and theory. Carbon. 1995;33:959-2. CrossRef
    31. Galvez A, Herlin-Boime N, Reynaud C, Clinard C, Rouzaud JN. Carbon nanoparticles from laser pyrolysis. Carbon. 2002;40(2775-):9.
    32. Jang BN, Wilkie CA. A TG/FTIR and mass spectral study on the thermal degradation of bisphenol A polycarbonate. Polym Degrad Stab. 2004;86:419-0. CrossRef
    33. Wang X, Hu Y, Song L, Xing WY, Lu HD, Lv P, Jie GX. Flame retardancy and thermal degradation mechanism of epoxy resin composites based on a DOPO substituted organophosphorus oligomer. Polymer. 2010;51:2435-5. CrossRef
  • 作者单位:Haibo Fan (1) (2)
    Rongjie Yang (1) (2)

    1. School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, People’s Republic of China
    2. National Engineering Research Center of Flame Retardant Materials, Beijing Institute of Technology, Zhongguancun South Street 5, Haidian District, Beijing, 100081, People’s Republic of China
  • ISSN:1572-8943
文摘
The mechanisms of the thermal degradation of polyhedral oligomeric octaphenylsilsesquioxane (OPS), octa(nitrophenyl)silsesquioxane (ONPS), and octa(aminophenyl)silsesquioxane (OAPS) were investigated. The –NO2 or –NH2 substituents on the phenyl group affected the mechanism of the POSS thermal degradation. The thermal stabilities of OPS, ONPS, and OAPS were characterized by TG and FTIR. Thermal degradation of OPS included mainly the degradation of caged polyhedral oligomeric silsesquioxane structures and phenyl groups. Nitro or amino substituents decreased its thermal stability. The thermal degradation processes of OPS, ONPS, and OAPS differed. Phenyl groups and cyclobutadiene were observed in the OPS degradation products. Oxygen radicals that caused intensive CO2 release between 350 and 450?°C were generated by the degradation of ONPS –NO2. OAPS released mainly aminophenyl groups at 370?°C, whereas a small number of phenyl groups decomposed at 500?°C. The OAPS reactivity could enhance the thermal stability of POSS structure in the polyimide OAPS composites.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700