用户名: 密码: 验证码:
Superior temporal gyrus thickness correlates with cognitive performance in multiple sclerosis
详细信息    查看全文
  • 作者:Asaf Achiron (1)
    Joab Chapman (1)
    Sigal Tal (2)
    Eran Bercovich (3)
    Hararai Gil (3)
    Anat Achiron (3)
  • 关键词:Multiple sclerosis ; Cortical thickness ; MRI ; Cognitive performance ; Superior temporal gyrus
  • 刊名:Brain Structure and Function
  • 出版年:2013
  • 出版时间:July 2013
  • 年:2013
  • 卷:218
  • 期:4
  • 页码:943-950
  • 全文大小:543KB
  • 参考文献:1. Achiron A, Gicquel S, Miron S, Faibel M (2002) Brain MRI lesion load quantification in multiple sclerosis: a comparison between automated multispectral and semi-automated thresholding computer-assisted techniques. Magn Reson Imaging 20:713-20 CrossRef
    2. Achiron A, Doniger GM, Harel Y, Appleboim-Gavish N, Lavie M, Simon ES (2007) Prolonged response times characterize cognitive performance in multiple sclerosis. Eur J Neurol 14:1102-108 CrossRef
    3. Amato MP, Bartolozzi ML, Zipoli V, Portaccio E, Mortilla M, Guidi L, Siracusa G, Sorbi S, Federico A, De Stefano N (2004) Neocortical volume decrease in relapsing–remitting MS patients with mild cognitive impairment. Neurology 63:89-3 CrossRef
    4. Amato MP, Portaccio E, Goretti B, Zipoli V, Battaglini M, Bartolozzi ML, Stromillo ML, Guidi L, Siracusa G, Sorbi S, Federico A, De Stefano N (2007) Association of neocortical volume changes with cognitive deterioration in relapsing–remitting multiple sclerosis. Arch Neurol 64:1157-161 CrossRef
    5. Anderson BJ, Eckburg PB, Relucio KI (2002) Alterations in the thickness of motor cortical subregions after motor-skill learning and exercise. Learn Mem 9:1- CrossRef
    6. Audoin B, Ibarrola D (2005) Functional MRI study of PASAT in normal subjects. MAGMA 18:96-02 CrossRef
    7. Bozzali M, Cercignani M, Sormani MP, Comi G, Filippi M (2002) Quantification of brain gray matter damage in different MS phenotypes by use of diffusion tensor MR imaging. AJNR Am J Neuroradiol 23:985-88
    8. Brunet E, Sarfati Y, Hardy-Bayle MC, Decety J (2000) A PET investigation of the attribution of intentions with a nonverbal task. Neuroimage 11:157-66 CrossRef
    9. Calabrese M, Atzori M, Bernardi V, Morra A, Romualdi C, Rinaldi L, McAuliffe MJ, Barachino L, Perini P, Fischl B, Battistin L, Gallo P (2007) Cortical atrophy is relevant in multiple sclerosis at clinical onset. J Neurol 254:1212-220 CrossRef
    10. Calabrese M, Rinaldi F, Mattisi I, Grossi P, Favaretto A, Atzori M, Bernardi V, Barachino L, Romualdi C, Rinaldi L, Perini P, Gallo P (2010) Widespread cortical thinning characterizes patients with MS with mild cognitive impairment. Neurology 7:321-28 CrossRef
    11. Chard DT, Griffin CM, Rashid W, Davies GR, Altmann DR, Kapoor R, Barker GJ, Thompson AJ, Miller DH (2004) Progressive grey matter atrophy in clinically early relapsing–remitting multiple sclerosis. Mult Scler 10:387-91 CrossRef
    12. Demerens C, Stankoff B, Logak M, Anglade P, Allinquant B, Couraud F, Zalc B, Lubetzki C (1996) Induction of myelination in the central nervous system by electrical activity. Proc Natl Acad Sci USA 93:9887-892 CrossRef
    13. Draganski B, Gaser C, Busch V, Schuierer G, Bogdahn U, May A (2004) Neuroplasticity: changes in grey matter induced by training. Nature 427:311-12 CrossRef
    14. Ge Y, Grossman RI, Udupa JK, Babb JS, Kolson DL, McGowan JC (2001) Magnetization transfer ratio histogram analysis of gray matter in relapsing–remitting multiple sclerosis. AJNR Am J Neuroradiol 22:470-75
    15. Geurts JJ, Barkhof F (2008) Grey matter pathology in multiple sclerosis. Lancet Neurol 7:841-51 CrossRef
    16. Geuze E, Westenberg HG, Heinecke A, de Kloet CS, Goebel R, Vermetten E (2008) Thinner prefrontal cortex in veterans with posttraumatic stress disorder. Neuroimage 41:675-81 CrossRef
    17. Goldberg II, Harel M, Malach R (2006) When the brain loses its self: prefrontal inactivation during sensorimotor processing. Neuron 50:329-39 CrossRef
    18. Haidar H, Soul JS (2006) Measurement of cortical thickness in 3D brain MRI data: validation of the Laplacian method. J Neuroimaging 16:146-53 CrossRef
    19. Inglese M, Ge Y, Filippi M, Falini A, Grossman RI, Gonen O (2004) Indirect evidence for early widespread gray matter involvement in relapsing–remitting multiple sclerosis. Neuroimage 21:1825-829 CrossRef
    20. Kurtzke JF (2008) Historical and clinical perspectives of the expanded disability status scale. Neuroepidemiology 31:1- CrossRef
    21. Lee JK, Lee JM, Kim JS, Kim IY, Evans AC, Kim SI (2006) A novel quantitative cross-validation of different cortical surface reconstruction algorithms using MRI phantom. Neuroimage 31:572-84 CrossRef
    22. Maguire EA, Mummery CJ (1999) Differential modulation of a common memory retrieval network revealed by positron emission tomography. Hippocampus 9:54-1 CrossRef
    23. Moll J, de Oliveira-Souza R, Eslinger PJ, Bramati IE, Mour?o-Miranda J, Andreiuolo PA, Pessoa L (2002) The neural correlates of moral sensitivity: a functional magnetic resonance imaging investigation of basic and moral emotions. J Neurosci 22:2730-736
    24. Morgen K, Sammer G, Courtney SM, Wolters T, Melchior H, Blecker CR, Oschmann P, Kaps M, Vaitl D (2006) Evidence for a direct association between cortical atrophy and cognitive impairment in relapsing–remitting MS. Neuroimage 30:891-98 CrossRef
    25. Pan JW, Krupp LB, Elkins LE, Coyle PK (2001) Cognitive dysfunction lateralizes with NAA in multiple sclerosis. Appl Neuropsychol 8:155-60 CrossRef
    26. Pelvig DP, Pakkenberg H, Stark AK, Pakkenberg B (2008) Neocortical glial cell numbers in human brains. Neurobiol Aging 29:1754-762 CrossRef
    27. Pozzilli C, Passafiume D, Bernardi S, Pantano P, Incoccia C, Bastianello S, Bozzao L, Lenzi GL, Fieschi C (1991) SPECT, MRI and cognitive functions in multiple sclerosis. J Neurol Neurosurg Psychiatry 54:110-15 CrossRef
    28. Pozzilli C, Fieschi C, Perani D, Paulesu E, Comi G, Bastianello S, Bernardi S, Bettinardi V, Bozzao L, Canal N (1992) Relationship between corpus callosum atrophy and cerebral metabolic asymmetries in multiple sclerosis. J Neurol Sci 112:51-7 CrossRef
    29. Price JL (2007) Definition of the orbital cortex in relation to specific connections with limbic and visceral structures and other cortical regions. Ann N Y Acad Sci 1121:54-1 CrossRef
    30. Prinster A, Quarantelli M, Orefice G, Lanzillo R, Brunetti A, Mollica C, Salvatore E, Morra VB, Coppola G, Vacca G, Alfano B, Salvatore M (2006) Grey matter loss in relapsing–remitting multiple sclerosis: a voxel-based morphometry study. Neuroimage 29:859-67 CrossRef
    31. Rocca MA, Pagani E, Ghezzi A, Falini A, Zaffaroni M, Colombo B, Scotti G, Comi G, Filippi M (2003) Functional cortical changes in patients with multiple sclerosis and nonspecific findings on conventional magnetic resonance imaging scans of the brain. Neuroimage 19:826-36 CrossRef
    32. Rudick RA, Trapp BD (2009) Gray-matter injury in multiple sclerosis. N Engl J Med 361:1505-506 CrossRef
    33. Sailer M, Fischl B, Salat D, Tempelmann C, Sch?nfeld MA, Busa E, Bodammer N, Heinze HJ, Dale A (2003) Focal thinning of the cerebral cortex in multiple sclerosis. Brain 126:1734-744 CrossRef
    34. Schaechter JD, Moore CI, Connell BD, Rosen BR, Dijkhuizen RM (2006) Structural and functional plasticity in the somatosensory cortex of chronic stroke patients. Brain 129:2722-733 CrossRef
    35. Sfagos C, Papageorgiou CC, Kosma KK, Kodopadelis E, Uzunoglu NK, Vassilopoulos D, Rabavilas AD (2003) Working memory deficits in multiple sclerosis: a controlled study with auditory P600 correlates. J Neurol Neurosurg Psychiatry 74:1231-235 CrossRef
    36. Smith AM, Walker LA, Freedman MS, DeMeulemeester C, Hogan MJ, Cameron I (2009) fMRI investigation of disinhibition in cognitively impaired patients with multiple sclerosis. J Neurol Sci 281:58-3 CrossRef
    37. Staffen W, Mair A, Zauner H, Unterrainer J, Niederhofer H, Kutzelnigg A, Ritter S, Golaszewski S, Iglseder B, Ladurner G (2002) Cognitive function and fMRI in patients with multiple sclerosis: evidence for compensatory cortical activation during an attention task. Brain 125:1275-282 CrossRef
    38. Tekok-Kilic A, Benedict RH, Weinstock-Guttman B, Dwyer MG, Carone D, Srinivasaraghavan B, Yella V, Abdelrahman N, Munschauer F, Bakshi R, Zivadinov R (2007) Independent contributions of cortical gray matter atrophy and ventricle enlargement for predicting neuropsychological impairment in multiple sclerosis. Neuroimage 36:1294-300 CrossRef
    39. Tiberio M, Chard DT, Altmann DR, Davies G, Griffin CM, Rashid W, Sastre-Garriga J, Thompson AJ, Miller DH (2005) Gray and white matter volume changes in early RRMS: a 2-year longitudinal study. Neurology 64:1001-007 CrossRef
    40. Vercellino M, Plano F, Votta B, Mutani R, Giordana MT, Cavalla P (2005) Grey matter pathology in multiple sclerosis. J Neuropathol Exp Neurol 64:1101-107 CrossRef
    41. Zivadinov R, Minagar A (2009) Evidence for gray matter pathology in multiple sclerosis: a neuroimaging approach. J Neurol Sci 282:1- CrossRef
  • 作者单位:Asaf Achiron (1)
    Joab Chapman (1)
    Sigal Tal (2)
    Eran Bercovich (3)
    Hararai Gil (3)
    Anat Achiron (3)

    1. Department of Neurology, Multiple Sclerosis Center, Sheba Medical Center, Sackler School of Medicine, Tel-Aviv University, Tel-Hashomer, Israel
    2. Department of Radiology, Sheba Medical Center, Sackler School of Medicine, Tel-Aviv University, Tel-Hashomer, Israel
    3. Multiple Sclerosis Center, Sheba Medical Center, Sackler School of Medicine, Tel-Aviv University, Tel-Hashomer, Israel
文摘
Decreased cortical thickness that signifies gray matter pathology and its impact on cognitive performance is a research field with growing interest in relapsing–remitting multiple sclerosis (RRMS) and needs to be further elucidated. Using high-field 3.0?T MRI, three-dimensional T1-FSPGR (voxel size 1?×?1?×?1?mm) cortical thickness was measured in 82 regions in the left hemisphere (LH) and right hemisphere (RH) in 20 RRMS patients with low disease activity and in 20 age-matched healthy subjects that in parallel underwent comprehensive cognitive evaluation. The correlation between local cortical atrophy and cognitive performance was examined. We identified seven regions with cortical tissue loss that differed between RRMS and age-matched healthy controls. These regions were mainly located in the frontal and temporal lobes, specifically within the gyrus rectus, inferior frontal sulcus, orbital gyrus, parahippocampal gyrus, and superior temporal gyrus, with preferential left asymmetry. Increased cortical thickness was identified in two visual sensory regions, the LH inferior occipital gyrus, and the RH cuneus, implicating adaptive plasticity. Correlation analysis demonstrated that only the LH superior temporal gyrus thickness was associated with cognitive performance and its thickness correlated with motor skills (r?=?0.65, p?=?0.003), attention (r?=?0.45, p?=?0.042), and information processing speed (r?=?0.50, p?=?0.025). Our findings show that restricted cortical thinning occurs in RRMS patients with mild disease and that LH superior temporal gyrus atrophy is associated with cognitive dysfunction.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700