用户名: 密码: 验证码:
Direct high-performance liquid chromatographic enantioseparation of free α-, β- and γ-aminophosphonic acids employing cinchona-based chiral zwitterionic ion exchangers
详细信息    查看全文
  • 作者:Andrea F. G. Gargano ; Michal Kohout…
  • 关键词:High ; performance liquid chromatography ; Cinchona ; based chiral zwitterionic ion exchanger ; Enantiomer separation ; Chiral stationary phases ; Aminophosphonic acids ; Aminophosphinic acids
  • 刊名:Analytical and Bioanalytical Chemistry
  • 出版年:2013
  • 出版时间:October 2013
  • 年:2013
  • 卷:405
  • 期:25
  • 页码:8027-8038
  • 全文大小:751KB
  • 参考文献:1. Hudson HR, Kukhar VP (2000) Aminophosphonic and aminophosphinic acids: chemistry and biological activity. Wiley, New York
    2. Mucha A, Kafarski P, Berlicki L (2011) Remarkable potential of the alpha-aminophosphonate/phosphinate structural motif in medicinal chemistry. J Med Chem 54(17):5955-980. doi:10.1021/jm200587f CrossRef
    3. Morphy JR, Beeley NRA, Boyce BA, Leonard J, Mason B, Millican A, Millar K, Oconnell JP, Porter J (1994) Potent and selective inhibitors of gelatinase-A. 2. Carboxylic and phosphonic acid-derivatives. Bioorg Med Chem Lett 4(23):2747-752. doi:10.1016/S0960-894x(01)80588-6 CrossRef
    4. Kraicheva I, Bogomilova A, Tsacheva I, Momekov G, Troev K (2009) Synthesis, NMR characterization and in vitro antitumor evaluation of new aminophosphonic acid diesters. Eur J Med Chem 44(8):3363-367. doi:10.1016/j.ejmech.2009.03.017 CrossRef
    5. Kafarski P, Lejczak B (1991) Biological activity of aminophosphonic acids. Phosphorus Sulfur 63(1-):193-15. doi:10.1080/10426509108029443 CrossRef
    6. Grzywa R, Oleksyszyn J, Salvesen GS, Drag M (2010) Identification of very potent inhibitor of human aminopeptidase N (CD13). Bioorg Med Chem Lett 20(8):2497-499. doi:10.1016/j.bmcl.2010.02.111 CrossRef
    7. Selvam C, Goudet C, Oueslati N, Pin JP, Acher FC (2007) L-(+)-2-Amino-4-thiophosphonobutyric acid (L-thioAP4), a new potent agonist of group III metabotropic glutamate receptors: increased distal acidity affords enhanced potency. J Med Chem 50(19):4656-664. doi:10.1021/jm070400y CrossRef
    8. Wallace EM, Moliterni JA, Moskal MA, Neubert AD, Marcopulos N, Stamford LB, Trapani AJ, Savage P, Chou M, Jeng AY (1998) Design and synthesis of potent, selective inhibitors of endothelin-converting enzyme. J Med Chem 41(9):1513-523. doi:10.1021/jm970787c CrossRef
    9. Beck J, Gharbi S, Herteg-Fernea A, Vercheval L, Bebrone C, Lassaux P, Zervosen A, Marchand-Brynaert J (2009) Aminophosphonic acids and aminobis(phosphonic acids) as potential inhibitors of penicillin-binding proteins. Eur J Org Chem 2009(1):85-7. doi:10.1002/ejoc.200800812 CrossRef
    10. Yang S, Gao X-W, Diao C-L, Song B-A, Jin L-H, Xu G-F, Zhang G-P, Wang W, Hu D-Y, Xue W, Zhou X, Lu P (2006) Synthesis and antifungal activity of novel chiral α-aminophosphonates containing fluorine moiety. Chin J Chem 24(11):1581-588. doi:10.1002/cjoc.200690296 CrossRef
    11. Manning HC, Goebel T, Marx JN, Bornhop DJ (2002) Facile, efficient conjugation of a trifunctional lanthanide chelate to a peripheral benzodiazepine receptor ligand. Org Lett 4(7):1075-078. doi:10.1021/ol017155b CrossRef
    12. Hammerschmidt F, Hanbauer M (2000) Transformation of arylmethylamines into alpha-aminophosphonic acids via metalated phosphoramidates: rearrangement of partly configurationally stable N-phosphorylated alpha-aminocarbanions. J Org Chem 65(19):6121-131. doi:10.1021/jo000585f CrossRef
    13. Hammerschmidt F, Li Y-F (1994) Determination of absolute configuration of α-hydroxyphosphonates by 31P NMR spectroscopy of corresponding Mosher esters. Tetrahedron 50:10253-0264. doi:10.1016/s0040-4020(01)81758-0 CrossRef
    14. Hammerschmidt F, Wuggenig F (1999) Enzymes in organic chemistry. Part 9: chemo-enzymatic synthesis of phosphonic acid analogues of L-valine, L-leucine, L-isoleucine, L-methionine and L-α-aminobutyric acid of high enantiomeric excess. Tetrahedron-Asymmetry 10:1709-721. doi:10.1016/s0957-4166(99)00152-4 CrossRef
    15. Schmidt U, Krause HW, Oehme G, Michalik M, Fischer C (1998) Enantioselective synthesis of α-aminophosphonic acid derivatives by hydrogenation. Chirality 10:564-72. doi:10.1002/(sici)1520-636x(1998)10:7<564::aid-chir3>3.0.co;2-2 CrossRef
    16. Woschek A, Lindner W, Hammerschmidt F (2003) Enzymes in organic chemistry, 11:[1] hydrolase-catalyzed resolution of α- and β-hydroxyphosphonates and synthesis of chiral, non-racemic β-aminophosphonic acids. Adv Synth Catal 345(12):1287-298. doi:10.1002/adsc.200303135 CrossRef
    17. Wuggenig F, Schweifer A, Mereiter K, Hammerschmidt F (2011) Chemoenzymatic synthesis of phosphonic acid analogues of L-lysine, L-proline, L-ornithine, and L-pipecolic acid of 99?% ee -assignment of absolute configuration to (--proline. Eur J Org Chem 2011(10):1870-879. doi:10.1002/ejoc.201001501 CrossRef
    18. Hammerschmidt F, Voellenkle H (1989) Absolute configuration of (2-amino-1-hydroxyethyl) phosphonic acid from Acanthamoeba castellanii (Neff). Preparation of phosphonic acid analogs of (+)- and (-)-serine. Liebigs Ann Chem 1989(6):577-83. doi:10.1002/jlac.1989198901101
    19. Fischer C, Schmidt U, Dwars T, Oehme G (1999) Enantiomeric resolution of derivatives of α-aminophosphonic and α-aminophosphinic acids by high-performance liquid chromatography and capillary electrophoresis. J Chromatogr A 845(1-):273-83. doi:10.1016/s0021-9673(99)00487-2
    20. Pirkle WH, Burke JA (1992) Separation of the enantiomers of the 3,5-dinitrobenzamide derivatives of α-amino phosphonates on four chiral stationary phases. J Chromatogr A 598(2):159-67. doi:10.1016/0021-9673(92)85044-T CrossRef
    21. Pirkle WH, Jonathan Brice L, Caccamese S, Principato G, Failla S (1996) Facile separation of the enantiomers of diethyl N-(aryl)-1-amino-1-arylmethanephosphonates on a rationally designed chiral stationary phase. J Chromatogr A 721(2):241-46. doi:10.1016/0021-9673(95)00844-6 CrossRef
    22. Pirkle WH, Jonathan Brice L, Widlanski TS, Roestamadji J (1996) Resolution and determination of the enantiomeric purity and absolute configurations of α-aryl-α-hydroxymethanephosphonates. Tetrahedron-Asymmetry 7(8):2173-176. doi:10.1016/0957-4166(96)00263-7 CrossRef
    23. Zarbl E, Lammerhofer M, Hammerschmidt F, Wuggenig F, Hanbauer M, Maier NM, Sajovic L, Lindner W (2000) Direct liquid chromatographic enantioseparation of chiral alpha- and beta-aminophosphonic acids employing quinine-derived chiral anion exchangers: determination of enantiomeric excess and verification of absolute configuration. Anal Chim Acta 404(2):169-77. doi:10.1016/s0003-2670(99)00700-x CrossRef
    24. L?mmerhofer M, Hebenstreit D, Gavioli E, Lindner W, Mucha A, Kafarski P, Wieczorek P (2003) High-performance liquid chromatographic enantiomer separation and determination of absolute configurations of phosphinic acid analogues of dipeptides and their α-aminophosphinic acid precursors. Tetrahedron-Asymmetry 14(17):2557-565. doi:10.1016/s0957-4166(03)00537-8 CrossRef
    25. Hoffmann CV, Reischl R, Maier NM, L?mmerhofer M, Lindner W (2009) Stationary phase-related investigations of quinine-based zwitterionic chiral stationary phases operated in anion-, cation-, and zwitterion-exchange modes. J Chromatogr A 1216(7):1147-156. doi:10.1016/j.chroma.2008.12.045 CrossRef
    26. Hoffmann CV, Pell R, L?mmerhofer M, Lindner W (2008) Synergistic effects on enantioselectivity of zwitterionic chiral stationary phases for separations of chiral acids, bases, and amino acids by HPLC. Anal Chem 80(22):8780-789. doi:10.1021/ac801384f CrossRef
    27. Hoffmann CV, Reischl R, Maier NM, L?mmerhofer M, Lindner W (2009) Investigations of mobile phase contributions to enantioselective anion- and zwitterion-exchange modes on quinine-based zwitterionic chiral stationary phases. J Chromatogr A 1216(7):1157-166. doi:10.1016/j.chroma.2008.12.044 CrossRef
    28. Pell R, Si? S, Lindner W (2012) Mechanistic investigations of cinchona alkaloid-based zwitterionic chiral stationary phases. J Chromatogr A. doi:10.1016/j.chroma.2012.08.006
    29. Wernisch S, Lindner W (2012) Versatility of cinchona-based zwitterionic chiral stationary phases: enantiomer and diastereomer separations of non-protected oligopeptides utilizing a multi-modal chiral recognition mechanism. J Chromatogr A 1269:297-07. doi:10.1016/j.chroma.2012.06.094 CrossRef
    30. Hoffmann CV, Reischl R, Maier NM, Lammerhofer M, Lindner W (2009) Investigations of mobile phase contributions to enantioselective anion- and zwitterion-exchange modes on quinine-based zwitterionic chiral stationary phases. J Chromatogr A 1216(7):1157-166. doi:10.1016/j.chroma.2008.12.044 CrossRef
    31. Hoffmann CV, Reischl R, Maier NM, Lammerhofer M, Lindner W (2009) Stationary phase-related investigations of quinine-based zwitterionic chiral stationary phases operated in anion-, cation-, and zwitterion-exchange modes. J Chromatogr A 1216(7):1147-156. doi:10.1016/j.chroma.2008.12.045 CrossRef
    32. Pell R, Sic S, Lindner W (2012) Mechanistic investigations of cinchona alkaloid-based zwitterionic chiral stationary phases. J Chromatogr A 1269:287-96. doi:10.1016/j.chroma.2012.08.006 CrossRef
    33. Pell R, Si? S, Lindner W (2012) Mechanistic investigations of cinchona alkaloid-based zwitterionic chiral stationary phases. J Chromatogr A 1269:287-96. doi:10.1016/j.chroma.2012.08.006 CrossRef
    34. Wernisch S, Pell R, Lindner W (2012) Increments to chiral recognition facilitating enantiomer separations of chiral acids, bases, and ampholytes using Cinchona-based zwitterion exchanger chiral stationary phases. J Sep Sci 35(13):1560-572. doi:10.1002/jssc.201200103 CrossRef
    35. L?mmerhofer M, Lindner W (1996) Quinine and quinidine derivatives as chiral selectors I. Brush type chiral stationary phases for high-performance liquid chromatography based on cinchonan carbamates and their application as chiral anion exchangers. J Chromatogr A 741(1):33-8. doi:10.1016/0021-9673(96)00137-9 CrossRef
    36. Maier NM, Schefzick S, Lombardo GM, Feliz M, Rissanen K, Lindner W, Lipkowitz KB (2002) Elucidation of the chiral recognition mechanism of cinchona alkaloid carbamate-type receptors for 3,5-dinitrobenzoyl amino Acids. J Am Chem Soc 124(29):8611-629. doi:10.1021/ja020203i CrossRef
  • 作者单位:Andrea F. G. Gargano (1)
    Michal Kohout (1) (2)
    Pavla Macíková (1) (3)
    Michael L?mmerhofer (4)
    Wolfgang Lindner (1)

    1. Department of Analytical Chemistry, University of Vienna, Waehringer Strasse 38, 1090, Vienna, Austria
    2. Department of Organic Chemistry, Institute of Chemical Technology, Technická 5, 16628, Prague, Czech Republic
    3. Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacky University, 17. listopadu 1192/12, 77146, Olomouc, Czech Republic
    4. Institute of Pharmaceutical Sciences, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
  • ISSN:1618-2650
文摘
We report a chiral high-performance liquid chromatographic enantioseparation method for free α-aminophosphonic, β-aminophosphonic, and γ-aminophosphonic acids, aminohydroxyphosphonic acids, and aromatic aminophosphinic acids with different substitution patterns. Enantioseparation of these synthons was achieved by means of high-performance liquid chromatography on CHIRALPAK ZWIX(+) and ZWIX(-) (cinchona-based chiral zwitterionic ion exchangers) under polar organic chromatographic elution conditions. Mobile phase characteristics such as acid-to-base ratio, type of counterion, and solvent composition were systematically varied in order to investigate their effect on the separation performance and to achieve optimal separation conditions for the set of analytes. Under the optimized conditions, 32 of 37 racemic aminophosphonic acids studied reached baseline separation when we employed a single generic mass-spectrometry-compatible mobile phase, with reversal of the elution order when we used (+) and (-) versions of the chiral stationary phase. Figure New zwitterionic ion-exchangers can separate free amino phosphonic acids and a change from Chiralpak ZWIX(+) to ZWIX(-) allows reversal of enantiomer elution order

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700