用户名: 密码: 验证码:
Magnetic forces and magnetized biomaterials provide dynamic flux information during bone regeneration
详细信息    查看全文
  • 作者:Alessandro Russo ; Michele Bianchi…
  • 刊名:Journal of Materials Science Materials in Medicine
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:27
  • 期:3
  • 全文大小:2,819 KB
  • 参考文献:1.Frost HM. Wolff’s Law and bone’s structural adaptations to mechanical usage: an overview for clinicians. Angle Orthod. 1994;64:175–88.
    2.LaMothe JM, Hamilton NH, Zernicke RF. Strain rate influences periosteal adaptation in mature bone. Med Eng Phys. 2005;27:277–84.CrossRef
    3.Robling AG, Turner CH. Mechanical Signaling for Bone Modeling and Remodeling. Crit Rev Eukaryot Gene Expr. 2009;19:319–38.CrossRef
    4.Peterson LF, Kelly PJ, Janes JM. Ultrastructure of bone: technic of microangiography as applied to the study of bone. Proc Staff Meet Mayo Clin. 1957;32:681–6.
    5.Ingber DE. Mechanobiology and diseases of mechanotransduction. Ann Med. 2003;35:564–77.CrossRef
    6.Fratzl P, Gupta HS, Paschalis EP, Roschger P. Structure and mechanical quality of the collagen–mineral nano-composite in bone. J Mater Chem. 2004;14:2115–23.CrossRef
    7.Hassenkam T, Fantner GE, Cutroni JA, Weaver JC, Morse DE, et al. High-resolution AFM imaging of intact and fractured trabecular bone. Bone. 2004;35:4–10.CrossRef
    8.Nudelman F, Pieterse K, George A, Bomans PH, Friedrich H, Brylka LJ, et al. The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat Mater. 2010;9:1004–9.CrossRef
    9.Olszta MJ, Chenga X, Jeea SS, Kumara R, Kima Y, Kaufmane MJ, et al. Bone structure and formation: a new perspective. Mater Sci Eng R. 2007;58:77–116.CrossRef
    10.Petite H, Viateau V, Bensaïd W, Meunier A, de Pollak C, Bourguignon M, et al. Tissue-engineered bone regeneration. Nat Biotechnol. 2000;18:959–63.CrossRef
    11.Michel D. Life is a self-organizing machine driven by the informational cycle of Brillouin. Orig Life Evol Biosph. 2013;43:137–50.CrossRef
    12.Nicolis G, Prigogine I. Symmetry breaking and pattern selection in far-from-equilibrium systems. Proc Natl Acad Sci USA. 1981;78:659–63.CrossRef
    13.Kleidon A, Lorenz RD. Non-equilibrium thermodynamics and the production of entropy: life, earth, and beyond. Berlin: Springer; 2005.CrossRef
    14.Khan Y, Yaszemski MJ, Mikos AG, Laurencin CT. Tissue engineering of bone: material and matrix considerations. J Bone Joint Surg Am. 2008;90A:36–42.CrossRef
    15.Garg T, Singh O, Arora S, Murthy R. Scaffold: a novel carrier for cell and drug delivery. Crit Rev Ther Drug Carrier Syst. 2012;29:1–63.CrossRef
    16.Keeney M, van den Beucken JJ, van der Kraan PM, Jansen JA. The ability of a collagen/calcium phosphate scaffold to act as its own vector for gene delivery and to promote bone formation via transfection with VEGF(165). Biomater. 2010;31:2893–902.CrossRef
    17.Bianchi M, Urquia Edreira ER, Wolke JG, Birgani ZT, Habibovic P, Jansen JA, et al. Substrate geometry directs the in vitro mineralization of calcium phosphate ceramics. Acta Biomater. 2014;10:661–9.CrossRef
    18.Kotani H, Kawaguchi H, Shimoaka T, Iwasaka M, Ueno S, Ozawa H, et al. Strong static magnetic field stimulates bone formation to a definite orientation in vitro and in vivo. J Bone Miner Res. 2002;17:1814–21.CrossRef
    19.Alenghat FJ, Fabry JB, Tsai KY, Goldmann WH, Ingber DE. Analysis of cell mechanics in single vinculin-deficient cells using a magnetic tweezer. Biochem Biophys Res Commun. 2000;277:93–9.CrossRef
    20.Fabry B, Maksym GN, Hubmayr DR, Butler JP, Fredburg JJ. Implications for heterogeneous bead behaviour on cell mechanical properties measured via magnetic twisting cytometry. J Magn Magn Mater. 1999;194:120–5.CrossRef
    21.Dobson J, Cartmell SH, Keramane A, El Haj AJ. Principle and Design of a novel magnetic force mechanical conditioning bioreactor for tissue engineering, stem cell conditioning, and dynamic in vitro screening. IEEE Trans Nanobiosci. 2006;5:173–7.CrossRef
    22.Wang N, Butler JP, Ingber DE. Mechanotransduction across the cell surface and through the cytoskeleton. Science. 1993;260:1124–7.CrossRef
    23.Schmidt C, Pommerenke H, Dürr F, Nebe B, Rychly J. Mechanical stressing of integrin receptors induces enhanced tyrosine phosphorylation of cytoskeletally anchored proteins. J Biol Chem. 1998;27:5081–5.CrossRef
    24.Pommerenke H, Schmidt C, Dürr F, Nebe B, Lüthen F, Muller P, et al. The mode of mechanical integrin stressing controls intracellular signaling in osteoblasts. J Bone Miner Res. 2002;17:603–11.CrossRef
    25.Pommerenke H, Schreiber E, Dürr F, Nebe B, Hahnel C, Möller W, et al. Stimulation of integrin receptors using a magnetic drag force device induces an intracellular free calcium response. Eur J Cell Biol. 1996;70:157–64.
    26.Bierbaum S, Holger N. Tyrosine phosphorylation of 40 kDa proteins in osteoblastic cells after mechanical stimulation of β1-integrins. Eur J Cell Biol. 1998;77:60–7.CrossRef
    27.Salter DM, Wallace WHB, Robb JE, Caldwell H, Wright MO. Human bone cell hyperpolarisation response to cyclical mechanical strain is mediated by an interleukin-1autocrine/paracrine loop. J Bone Miner Res. 2000;15:1746–55.CrossRef
    28.Hughes S, El Haj AJ, Dobson J. Magnetic micro- and nanoparticle mediated activation of mechanosensitive ion channels. Med Eng Phys. 2005;27:754–62.CrossRef
    29.Panseri S, Cunha C, D’Alessandro T, Sandri M, Russo A, Giavaresi G, et al. Magnetic hydroxyapatite bone substitutes to enhance tissue regeneration: evaluation in vitro using osteoblast-like cells and in vivo in a bone defect. PLoS One. 2012;7:e38710.CrossRef
    30.Russo A, Shelyakova T, Casino D, Lopomo N, Strazzari A, Ortolani A, et al. A new approach to scaffold fixation by magnetic forces: application to large osteochondral defects. Med Eng Phys. 2012;34:1287–93.CrossRef
    31.Panseri S, Russo A, Giavaresi G, Sartori M, Veronesi F, Fini M, et al. Innovative magnetic scaffolds for orthopedic tissue engineering. J Biomed Mater Res A. 2012;100:2278–86.
    32.Panseri S, Russo A, Sartori M, Giavaresi G, Sandri M, Fini M, et al. Modifying bone scaffold architecture in vivo with permanent magnets to facilitate fixation of magnetic scaffolds. Bone. 2013;56:432–9.CrossRef
    33.Tampieri A, Landi E, Valentini F, Sandri M, D’Alessandro T, Dediu V, et al. A conceptually new type of bio-hybrid scaffold for bone regeneration. Nanotechnology. 2011;22:015104.CrossRef
    34.Bock N, Riminucci A, Dionigi C, Russo A, Tampieri A, Landi E, et al. A novel route in bone tissue engineering: magnetic biomimetic scaffolds. Acta Biomater. 2010;6:786–96.CrossRef
    35.Scaglione S, Giannoni P, Bianchini P, Sandri M, Marotta R, Firpo G, Valbusa U, Tampieri A, Diaspro A, Bianco P, Quarto R. Order versus Disorder: in vivo bone formation within osteoconductive scaffolds. Sci Rep. 2012;2:274.CrossRef
    36.Tampieri A, Celotti G, Landi E, Sandri M, Roveri N, Falini G. Biologically inspired synthesis of bone-like composite: self-assembled collagen fibers/hydroxyapatite nanocrystals. J Biomed Mater Res A. 2003;67A:618–25.CrossRef
    37.Riminucci A, Dionigi C, Pernechele C, de Pasquale G, de Caro T, Ingo GM, Mezzadri F, Bock N, Solzi M, Padeletti G, Sandri M, Tampieri A, Dediu VA. Magnetic and morphological properties of ferrofluid-impregnated hydroxyapatite/collagen scaffolds. Sci Adv Mater. 2014;6:2679–87.CrossRef
    38.Rezakhaniha R, Agianniotis A, Schrauwen JT, Griffa A, Sage D, Bouten CV, et al. Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy. Biomech Model Mechanobiol. 2002;11:461–73.CrossRef
    39.Rodriguez-Florez N, Oyen ML, Shefelbine SJ. Insight into differences in nanoindentation properties of bone. J Mech Behav Biomed Mater. 2013;18:90–9.CrossRef
    40.Bianchi M, Boi M, Sartori M, Giavaresi G, Lopomo N, Fini M, et al. Nanomechanical mapping of bone tissue regenerated by magnetic scaffolds. J Mater Sci Mater Med. 2015;26:35–43.CrossRef
    41.Oliver WC, Parr GM. Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res. 2004;19:3–20.CrossRef
    42.Bianchi M, Russo A, Lopomo N, Boi M, Maltarello MC, Sprio S, et al. Pulsed plasma deposition of zirconia thin films on UHMWPE: proof of concept of a novel approach for joint prosthetic implants. J Mater Chem B. 2013;1:310–8.CrossRef
    43.Ishimoto T, Nakano T, Yamamoto M, Tabata Y. Biomechanical evaluation of regenerating long bone by nanoindentation. J Mater Sci Mater Med. 2011;22:969–76.CrossRef
    44.Bala Y, Depalle B, Douillard T, Meille S, Clément P, Follet H, et al. Respective roles of organic and mineral components of human cortical bone matrix in micromechanical behavior: an instrumented indentation study. J Mech Biomed Mater. 2011;4:1473–82.CrossRef
    45.Torbet J, Ronziere M. Magnetic alignment of collagen during self-assembly. Biochem J. 1984;219:1057–9.CrossRef
    46.Ueno S, Iwasaka M, Eguchi H, Kitajiama T. Dynamic behavior of gas-flow in gradient magnetic-fields. IEEE Trans Mag. 1993;29:3264–6.CrossRef
    47.Kotani H, Iwasaka M, Ueno S. Magnetic orientation of collagen and bone mixture. J Appl Phys. 2000;87:6191–3.CrossRef
    48.Mannix JR, Kumar S, Cassiola F, Montoya-Zavala M, Feinstein E, Prentiss M, et al. Nanomagnetic actuation of receptor-mediated signal transduction. Nat Nanotechnol. 2008;3:36–40.CrossRef
  • 作者单位:Alessandro Russo (1) (2)
    Michele Bianchi (1)
    Maria Sartori (3)
    Annapaola Parrilli (3)
    Silvia Panseri (4)
    Alessandro Ortolani (2)
    Monica Sandri (4)
    Marco Boi (1)
    Donald M. Salter (5)
    Maria Cristina Maltarello (6)
    Gianluca Giavaresi (3) (7)
    Milena Fini (3) (7)
    Valentin Dediu (8)
    Anna Tampieri (4)
    Maurilio Marcacci (1) (2)

    1. Laboratorio di NanoBiotechnologie (NABI), Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
    2. Laboratorio di Biomeccanica ed Innovazione Tecnologica, Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
    3. Laboratorio di Biocompatibilità Innovazioni Tecnologiche e Terapie Avanzate (BITTA), Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
    4. Istituto di Scienza e Tecnologia dei Materiali Ceramici (ISTEC), Consiglio Nazionale delle Ricerche, via Granarolo 64, 48018, Faenza, Italy
    5. Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
    6. Laboratorio di Biologia Cellulare Muscoloscheletrica, Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
    7. Laboratorio Studi Preclinici e Chirurgici, Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
    8. Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Consiglio Nazionale delle Ricerche, via Gobetti 101, 40129, Bologna, Italy
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biomaterials
    Characterization and Evaluation Materials
    Polymer Sciences
    Metallic Materials
    Ceramics,Glass,Composites,Natural Materials
    Surfaces and Interfaces and Thin Films
  • 出版者:Springer Netherlands
  • ISSN:1573-4838
文摘
The fascinating prospect to direct tissue regeneration by magnetic activation has been recently explored. In this study we investigate the possibility to boost bone regeneration in an experimental defect in rabbit femoral condyle by combining static magnetic fields and magnetic biomaterials. NdFeB permanent magnets are implanted close to biomimetic collagen/hydroxyapatite resorbable scaffolds magnetized according to two different protocols . Permanent magnet only or non-magnetic scaffolds are used as controls. Bone tissue regeneration is evaluated at 12 weeks from surgery from a histological, histomorphometric and biomechanical point of view. The reorganization of the magnetized collagen fibers under the effect of the static magnetic field generated by the permanent magnet produces a highly-peculiar bone pattern, with highly-interconnected trabeculae orthogonally oriented with respect to the magnetic field lines. In contrast, only partial defect healing is achieved within the control groups. We ascribe the peculiar bone regeneration to the transfer of micro-environmental information, mediated by collagen fibrils magnetized by magnetic nanoparticles, under the effect of the static magnetic field. These results open new perspectives on the possibility to improve implant fixation and control the morphology and maturity of regenerated bone providing “in site” forces by synergically combining static magnetic fields and biomaterials.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700