用户名: 密码: 验证码:
Can tidal perturbations associated with sea level variations in the western Pacific Ocean be used to understand future effects of tidal evolution?
详细信息    查看全文
  • 作者:Adam T. Devlin (1)
    David A. Jay (1)
    Stefan A. Talke (1)
    Edward Zaron (1)
  • 关键词:Astronomical tides ; Western tropical pacific ; Sea level variability ; Tidal anomaly trends ; Climate change ; Resonant triads
  • 刊名:Ocean Dynamics
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:64
  • 期:8
  • 页码:1093-1120
  • 全文大小:10,976 KB
  • 参考文献:1. Amin M (1983) On Perturbations of harmonic constants in the Thames Estuary, Geophysical Journal of the Royal Astronomical Society, 75:587-03. doi:10.1111/j.1365-246X.1983.tb03334
    2. Arbic BK (2005) Atmospheric forcing of the oceanic semidiurnal tide. Geophys Res Lett 32, L02610. doi:10.1029/2004GL021668 CrossRef
    3. Arbic BK, Garrett C (2010) A coupled oscillator model of shelf and ocean tides. Cont Shelf Res 30(6):564-74. doi:10.1016/j.csr.2009.07.008 CrossRef
    4. Arbic BK, Karsten RH, Garrett C (2009) On tidal resonance in the global ocean and the back-effect of coastal tides upon open-ocean tides. Atmosphere-Ocean 47(4):239-66. doi:10.3137/OC311.2009 CrossRef
    5. Armstrong JA, Bloembergen N, Ducuing J, Pershan PS (1962) Interactions between light waves in a nonlinear dielectric. Phys Rev 127:1918-939. doi:10.1103/PhysRev.127.1918 CrossRef
    6. Ball FK (1964) Energy transfer between external and internal gravity waves. J Fluid Mech 20:465-78. doi:10.1017/S0022112064001550 CrossRef
    7. Bretherton FP (1964) Resonant interactions between waves. J Fluid Mech 20:457-79. doi:10.1017/S0022112064001355 CrossRef
    8. Bromirski PD, Miller AJ, Flick RE, Auad G (2011) Dynamical suppression of sea level rise along the Pacific coast of North America: indications for imminent acceleration. J Geophys Res 116, CO7005. doi:10.1029/2010JC006759 CrossRef
    9. Carter GS, Gregg MC (2006) Persistent near-diurnal internal waves observed above a site of M2 barotropic-to-baroclinic conversion. J Phys Oceanogr 36(6):1136-147. doi:10.1175/JPO2884.1 CrossRef
    10. Cartwright DE, Edden AC (1973) Corrected tables of tidal harmonics. Geophys Res Lett 33:253-64. doi:10.1111/j.1365-246X.1973.tb03420.x
    11. Cartwright DE, Tayler RJ (1971) New computations of the tide-generating potential. Geophys J R Astron Soc 23:45-4. doi:10.1111/j.1365-246X.1971.tb01803.x CrossRef
    12. Cazenave A, Nerem RS (2004) Present-day sea level change: observations and causes. Rev Geophys 42, RG3001. doi:10.1029/2003RG000139 , 1-0 CrossRef
    13. Chiswell SM (1994) Vertical structure of the baroclinic tides in the central North Pacific subtropical gyre. J Phys Oceanogr 24:2032-039. doi:10.1175/1520-0485(1994)24[2032:VSOTBT]2.0.CO;2 CrossRef
    14. Church JA, White NJ (2006) A 20th century acceleration in global sea-level rise. Geophys Res Lett 33, L01602. doi:10.1029/2005GL024826 CrossRef
    15. Church JA, White NJ (2011) Sea-level rise from the late 19th to the early 21st century. Surv Geophys. doi:10.1007/s10712-011-9119-1
    16. Church JA, White NJ, Coleman R, Layback K, Mitrovica JX (2004) Estimates of the regional distribution of sea level rise over the 1950-000 period. J Clim 17:2609-625. doi:10.1175/1520-0442(2004) CrossRef
    17. Church JA, Roemmich D, Domingues CM, Willis JK, White NJ, Gilson JE, Stammer D, K?hl A, Chambers DP, Landerer FW, Marotzke J, Gregory JM, Tatsuo Suzuki, Cazenave A, Le Traon P-Y (2011) Ocean temperature and salinity contributions to global and regional sea-level change. In: Understanding sea-level rise and variability. Wiley-Blackwell, Oxford, pp 143-76, doi:10.1029/2007EO040008
    18. Colossi JA, Munk W (2006) Tales of the venerable Honolulu tide gauge. J Phys Oceanogr 36:967-96. doi:10.1175/JPO2876.1 CrossRef
    19. Craik ADD (1985) Wave interactions and fluid flows. Cambridge Univ. Press, Cambridge, U. K, ISBN: 978-0521368292
    20. Domingues CM, Church JA, White NJ, Glecker PJ, Wijffels SE, Barker PM, Dunn JR (2008) Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature 453:1090-094. doi:10.1038/nature07080 CrossRef
    21. Dushaw BD, Cornuelle BD, Worcester PF, Howe BM, Luther DS (1995) Barotropic and baroclinic tides in the central North Pacific Ocean determined from long-range reciprocal acoustic transmissions. J Phys Oceangr 25:631-47. doi:10.1175/1520-0485(1995)025<0631:BABTIT>2.0.CO;2 CrossRef
    22. Egbert GD, Erofeeva SY (2002) Efficient inverse modeling of Barotropic Ocean tides. J Atmos Ocean Technol 19(2):183-04. doi:10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2
    23. Egbert GD, Erofeeva SY (2010) OTIS (OSU Tidal Inversion Software) TPXO7.2. College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, http://volkov.oce.orst.edu/tides/otis.html
    24. Flick RE, Murray JF, Ewing LC (2003) Trends in United States tidal datum statistics and tide range. J Waterw Port Coast Ocean Eng Am Soc Civil Eng 129(4):155-64. doi:10.1061/~ASCE10733-950X~20031129:4~1551 CrossRef
    25. Frelich MH, Guza RT (1984) Nonlinear effects on shoaling surface gravity waves, Philosophical Transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences, 311(1515):1-1. doi:10.1029/JC095iC06p09645
    26. Gerkema T, Staquet C, Bouruet-Aubertot P (2006) Decay of semidiurnal internal-tide beams due to subharmonic resonance. Geophys Res Lett 33, L08604. doi:10.1029/2005GL025105
    27. Gill AE (1982) Atmosphere–ocean dynamics (vol. 30). Academic press, ISBN: 978-0122835223
    28. Godin G (1986) Is the abnormal response of the tide at the frequency of S2 really due to radiational effects?, Continental Shelf Research, 6(5)615-625. doi:10.1016/0278-4343(86)90026-9
    29. Haigh I, Nicholls R, Wells N (2010) Assessing changes in extreme sea levels: applications to the English Channel, 1900-006. Cont Shelf Res 30:1042-055. doi:10.1016/j.csr.2010.02.002 CrossRef
    30. Hamlington BD, Leben RR, Nerem RS, Han W, Kim KY (2011) Reconstructing sea level using cyclostationary empirical orthogonal functions. J Geophys Res 116, C12015. doi:10.1029/2011JC007529 CrossRef
    31. Hibiya T, Nagasawa M, Niwa Y (2002) Nonlinear energy transfer within the oceanic internal wave spectrum at mid and high latitudes. J Geophys Res 107(C11):3207. doi:10.1029/2001JC001210 CrossRef
    32. Horsburgh KL, Wilson C (2007) Tide–surge interaction and its role in the distribution of surge residuals in the North Sea. J Geophys Res 112, CO8003. doi:10.1029/2006JC004033 CrossRef
    33. Huang NE, Wu Z (2008) A review on Hilbert-Huang transform: method and its application to geophysical studies. Rev Geophys 46, RG2006. doi:10.1029/2007RG000228 , 1-3 CrossRef
    34. Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen NC, Tung CC, Liu HH (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time-series analysis. Proc R Soc Lond A 454:903-95. doi:10.1098/rspa.1998.0193 CrossRef
    35. Huber PJ (1981) Robust statistics. John Wiley & Sons, Inc, Hoboken. doi:10.1137/1.9781611970036.fm CrossRef
    36. Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nystrom M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301:929. doi:10.1126/science.1085046 CrossRef
    37. Hughes TP, Graham NAJ, Jackson JBC, Mumby PJ, Steneck RS (2010) Rising to the challenge of sustaining coral reef resilience. Trends Ecol Evol 25:11. doi:10.1016/j.tree.2010.07.011
    38. Jay DA (2009) Evolution of tidal amplitudes in the eastern Pacific Ocean. Geophys Res Lett 36, L04603. doi:10.1029/2008GL036185 CrossRef
    39. Jay DA, Leffler K, Degens S (2011) Long-term evolution of Columbia River tides. ASCE J Waterw Port Coast Ocean Eng 137:182-91. doi:10.1061/(ASCE)WW.1943- 5460.0000082 CrossRef
    40. Kaup DJ (1980) A method for solving the separable initial value problem of the full three dimensional three-wave interaction. Stud Appl Math 62:75-3
    41. Kohl A, Stammer D, Cornuelle B (2007) Interannual to decadal changes in the ECCO global synthesis. J Phys Oceanogr 37:313-37. doi:10.1175/JPO3014.1 CrossRef
    42. Kukulka T, Jay DA (2003) Impacts of Columbia River discharge on salmonid habitat II. Changes in shallow-water habitat. J Geophys Res 108:3294 CrossRef
    43. Lamb KG (2007) Tidally generated near-resonant internal wave triads at a shelf break. Geophys Res Lett 34, L18607. doi:10.1029/2007GL030825 CrossRef
    44. Leffler KE, Jay DA (2009) Enhancing tidal harmonic analysis: robust solutions. Cont Shelf Res 29(1):78-8. doi:10.1016/j.csr.2008.04.011 CrossRef
    45. Legg S, Klymak J (2008) Internal hydraulic jumps and overturning generated by tidal flow over a tall steep ridge. J Phys Oceangr 38:1949-964 CrossRef
    46. Lelong MP, Kunze E (2013) Can barotropic tide–eddy interactions excite internal waves? J Fluid Mech 721:1-7. doi:10.1017/jfm.2013.1 CrossRef
    47. Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE, Baranova OK, Zweng MM, Johnson DR (2010) World Ocean Atlas 2009. In: Levitus S (ed) NOAA Atlas NESDIS 67. U.S. Gov. Printing Office, Washington, 184 pp
    48. Lombard A, Garric G, Penduff T (2009) Regional patterns of observed sea level change: insights from a 1/48 global ocean/sea-ice hindcast. Ocean Dyn 59:433-49. doi:10.1007/s10236-008-0161-6 CrossRef
    49. MacKinnon JA, Winters KB (2005) Subtropical catastrophe: significant loss of low-mode tidal energy at 28.9N. Geophys Res Lett 2, L15605 CrossRef
    50. Merrifield MA (2011) A shift in western tropical Pacific sea level trends during the 1990s. J Clim 24:4126-138. doi:10.1175/2011JCLI3932.1 CrossRef
    51. Millero FJ, Rainer F, Wright DG, McDougall TJ (2008) The composition of standard seawater and the definition of the reference-composition salinity scale. Deep Sea Res Part I 55(1):50-2. doi:10.1016/j.dsr.2007.10.001 CrossRef
    52. Mitchum GT, Chiswell SM (2000) Coherence of internal tide modulations along the Hawaiian ridge. J Geophys Res 105(C12):28653-8661. doi:10.1029/2000JC900140 CrossRef
    53. Müller M (2012) The influence of changing stratification conditions on barotropic tidal transport. Cont Shelf Res 47(15):107-88. doi:10.1016/j.csr.2012.07.003 CrossRef
    54. Müller M, Arbic BK, Mitrovica J (2011) Secular trends in ocean tides: observations and model results. J Geophys Res 116(C05):013. doi:10.1029/2010JC006387
    55. National Research Council (2012) Sea-level rise for the coasts of California, Oregon, and Washington: past, present, and future. National Academies Press, Washington
    56. Nerem RS, Chambers DP, Leuliette EW, Mitchum GT, Giese BS (1999) Variations in global mean sea level associated with the 1997-998 ENSO event: implications for measuring long term sea level change. Geophys Res Lett 26(19):3005-008. doi:10.1029/1999GL002311 CrossRef
    57. Nicholls RJ, Cavenaze A (2010) Sea level rise and its impacts on coastal zones. Science 328:1517-520. doi:10.1126/science.1185782 , 5985 pp CrossRef
    58. Parker B (1991) Tidal hydrodynamics. Wiley, NY, 1-83, ISBN: 978-0471514985
    59. Pawlowicz R, Beardsley B, Lentz S (2002) Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput Geosci 28(8):929-37 CrossRef
    60. Pickering MD, Wells NC, Horsburgh KJ, Green JAM (2012) The impact of future sea-level rise on the European Shelf tides. Cont Shelf Res 35:1-5. doi:10.1016/j.csr.2011.11.011 CrossRef
    61. Pugh DT (1987) Tides, surges and mean sea-level: a handbook for engineers and scientists. Wiley, Chichester, 472 pp, ISBN: 978-0471915058
    62. Pugh DT (2004) Changing sea levels. Effects of tides, weather and climate. Cambridge University Press, 280?pp, ISBN: 978-0521532181
    63. Rainville L, Pinkel R (2006) Propagation of low-mode internal waves through the ocean. J Phys Oceangr 36(6):1220-236. doi:10.1175/JPO2882.1 CrossRef
    64. Ray RD (2001) Comparisons of global analyses and station observations of the S2 barometric tide. Geophys Res Lett 28:21-4. doi:10.1016/S1364-6826(01)00018-9 CrossRef
    65. Ray RD (2006) Secular changes of the M2 tide in the Gulf of Maine. Cont Shelf Res 26(3):422-27. doi:10.1016/j.csr.2005.12.005 CrossRef
    66. Ray RD (2009) Secular changes in the solar semidiurnal tide of the western North Atlantic Ocean. Geophys Res Lett 36, L19601. doi:10.1029/2009GL040217 CrossRef
    67. Ray RD, Mitchum GT (1996) Surface manifestations of internal tides generated near Hawaii. Geophys Res Lett 23:2101-104. doi:10.1029/96GL02050 CrossRef
    68. Ray RD, Mitchum GT (1997) Surface manifestations of internal tides in the deep ocean: observations from altimetry and island gauges. Prog Oceanogr 40:135-62. doi:10.1016/S0079-6611(97)00025-6 CrossRef
    69. Ropelewski CF, Halpert MS (1987) Global and regional scale precipitation patterns associated with the El Nino/Southern Oscillation. Mon Weather Rev 115:1606-626 CrossRef
    70. Simmons WF (1969) A variational method for weak resonant wave interactions, Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, 309(1499):551-57. doi:10.1098/rspa.1969.0056
    71. Timmermann A, McGregor S, Jin FF (2010) Wind effects on past and future regional sea level trends in the southern Indo-Pacific. J Clim 23:4429-437. doi:10.1175/2010JCLI3519.1 CrossRef
    72. Weiland J, Wilhelmsson H (1977) Coherent non-linear interaction of waves in plasmas. Pergamon Press, ISBN: 978-0080209647
    73. White WB, Cayan DR, Dettinger MD, Auad G (2001) Sources of global warming in the upper ocean temperature during El Nino. J Geophys Res 106(C3):4349-367. doi:10.1029/1999JC000130 CrossRef
    74. Wolanski E (1994) Physical oceanographic processes of the Great Barrier Reef. CRC Press, 208 pp, ISBN: 0849380472
    75. Woodworth PL (2010) A survey of recent changes in the main components of the ocean tide. Cont Shelf Res 30(15):1680-691. doi:10.1016/j.csr.2010.07.002 CrossRef
    76. Wu Z, Huang NE (2009) Ensemble empirical mode decomposition: a noise-assisted data-analysis method. Adv Adapt Data Anal 1(1):1-1 CrossRef
    77. Xie XH, Chen GY, Shang XD, Fang WD (2008) Evolution of the semidiurnal (M2) internal tide on the continental slope of the northern South China Sea. Geophys Res Lett 35, L13604. doi:10.1029/2008GL034179 CrossRef
    78. Zakharov VE, Manakov SV (1973) Resonant interaction of wave packets in nonlinear media. Sov Phys JTEP Lett 18:243-47
    79. Zaron E, Jay DA (2014) An analysis of secular changes in tides at open-ocean sites in the Pacific. Accepted by J Phys Oceanogr
  • 作者单位:Adam T. Devlin (1)
    David A. Jay (1)
    Stefan A. Talke (1)
    Edward Zaron (1)

    1. Civil & Environmental Engineering, Portland State University, PO Box 751, Portland, OR, 97207-0751, USA
  • ISSN:1616-7228
文摘
This study examines connections between mean sea level (MSL) variability and diurnal and semidiurnal tidal constituent variations at 17 open-ocean and 9 continental shelf tide gauges in the western tropical Pacific Ocean, a region showing anomalous rise in MSL over the last 20?years and strong interannual variability. Detrended MSL fluctuations are correlated with detrended tidal amplitude and phase fluctuations, defined as tidal anomaly trends (TATs), to quantify the response of tidal properties to MSL variation. About 20 significant amplitude and phase TATs are found for each of the two strongest tidal constituents, K1 (diurnal) and M2 (semidiurnal). Lesser constituents (O1 and S2) show trends at nearly half of all gauges. Fluctuations in MSL shift amplitudes and phases; both positive and negative responses occur. Changing overtides suggest that TATs are influenced by changing shallow water friction over the equatorial Western Pacific and the eastern coast of Australia (especially near the Great Barrier Reef). There is a strong connection between semidiurnal TATs at stations around the Solomon Islands and changes in thermocline depth, overtide generation, and the El Ni?o Southern Oscillation (ENSO). TATs for O1, K1, and M2 are related to each other in a manner that suggests transfer of energy from M2 to the two diurnals via resonant triad interactions; these cause major tidal variability on sub-decadal time scales, especially for M2. The response of tides to MSL variability is not only spatially complex, it is frequency dependent; therefore, short-term responses may not predict long-term behavior.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700