用户名: 密码: 验证码:
Quantitative proteomics analysis reveals glutamine deprivation activates fatty acid β-oxidation pathway in HepG2 cells
详细信息    查看全文
  • 作者:Baisheng Long ; Rodiallah Muhamad ; Guokai Yan ; Jie Yu ; Qiwen Fan…
  • 关键词:Glutamine ; Lipid metabolism ; Fatty acid ; Quantitative proteomics ; HepG2 cells
  • 刊名:Amino Acids
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:48
  • 期:5
  • 页码:1297-1307
  • 全文大小:1,238 KB
  • 参考文献:Adachi T, Matsumoto Y, Inagaki Y, Sekimizu K (2015) Niemann-Pick disease type C2 protein induces autophagy and inhibits growth in FM3A breast cancer cells. Drug Discov Ther. doi:10.​5582/​ddt.​2015.​01014 PubMed
    Alphey MS, Yu W, Byres E, Li D, Hunter WN (2005) Structure and reactivity of human mitochondrial 2,4-dienoyl-CoA reductase: enzyme-ligand interactions in a distinctive short-chain reductase active site. J Biol Chem 280:3068–3077. doi:10.​1074/​jbc.​M411069200 CrossRef PubMed
    Amigo L et al (2003) Hepatic overexpression of sterol carrier protein-2 inhibits VLDL production and reciprocally enhances biliary lipid secretion. J Lipid Res 44:399–407. doi:10.​1194/​jlr.​M200306-JLR200 CrossRef PubMed
    Amores-Sanchez MI, Medina MA (1999) Glutamine, as a precursor of glutathione, and oxidative stress. Mol Genet Metab 67:100–105. doi:10.​1006/​mgme.​1999.​2857 CrossRef PubMed
    Atshaves BP et al (2009) Overexpression of sterol carrier protein-2 differentially alters hepatic cholesterol accumulation in cholesterol-fed mice. J Lipid Res 50:1429–1447. doi:10.​1194/​jlr.​M900020-JLR200 CrossRef PubMed PubMedCentral
    Bechmann LP, Hannivoort RA, Gerken G, Hotamisligil GS, Trauner M, Canbay A (2012) The interaction of hepatic lipid and glucose metabolism in liver diseases. J Hepatol 56:952–964. doi:10.​1016/​j.​jhep.​2011.​08.​025 CrossRef PubMed
    Brose SA, Marquardt AL, Golovko MY (2014) Fatty acid biosynthesis from glutamate and glutamine is specifically induced in neuronal cells under hypoxia. J Neurochem 129:400–412. doi:10.​1111/​jnc.​12617 CrossRef PubMed PubMedCentral
    Brosnan JT, Brosnan ME (2013) Glutamate: a truly functional amino acid. Amino Acids 45:413–418. doi:10.​1007/​s00726-012-1280-4 CrossRef PubMed
    Cabodevilla AG, Sanchez-Caballero L, Nintou E, Boiadjieva VG, Picatoste F, Gubern A, Claro E (2013) Cell survival during complete nutrient deprivation depends on lipid droplet-fueled beta-oxidation of fatty acids. J Biol Chem 288:27777–27788. doi:10.​1074/​jbc.​M113.​466656 CrossRef PubMed PubMedCentral
    Cersosimo E, Williams P, Hoxworth B, Lacy W, Abumrad N (1986) Glutamine blocks lipolysis and ketogenesis of fasting. Am J Physiol 250:E248–E252PubMed
    Curi R, Newsholme P, Procopio J, Lagranha C, Gorjao R, Pithon-Curi TC (2007) Glutamine, gene expression, and cell function. Front Biosci J Virtual Lib 12:344–357CrossRef
    Daye D, Wellen KE (2012) Metabolic reprogramming in cancer: unraveling the role of glutamine in tumorigenesis. Semin Cell Dev Biol 23:362–369. doi:10.​1016/​j.​semcdb.​2012.​02.​002 CrossRef PubMed
    Dong H, Czaja MJ (2011) Regulation of lipid droplets by autophagy. Trends Endocrinol Metab 22:234–240. doi:10.​1016/​j.​tem.​2011.​02.​003 CrossRef PubMed PubMedCentral
    Ellis JM et al (2011) Mouse cardiac acyl coenzyme a synthetase 1 deficiency impairs fatty acid oxidation and induces cardiac hypertrophy. Mol Cell Biol 31:1252–1262. doi:10.​1128/​mcb.​01085-10 CrossRef PubMed PubMedCentral
    Fidaleo M et al (2011) A role for the peroxisomal 3-ketoacyl-CoA thiolase B enzyme in the control of PPARalpha-mediated upregulation of SREBP-2 target genes in the liver. Biochimie 93:876–891. doi:10.​1016/​j.​biochi.​2011.​02.​001 CrossRef PubMed
    Finn PF, Dice JF (2006) Proteolytic and lipolytic responses to starvation. Nutrition 22:830–844. doi:10.​1016/​j.​nut.​2006.​04.​008 CrossRef PubMed
    Fuchs M et al (2001) Disruption of the sterol carrier protein 2 gene in mice impairs biliary lipid and hepatic cholesterol metabolism. J Biol Chem 276:48058–48065. doi:10.​1074/​jbc.​M106732200 PubMed
    Ho J et al (2009) Novel breast cancer metastasis-associated proteins. J Proteome Res 8:583–594. doi:10.​1021/​pr8007368 CrossRef PubMed
    Huijbregts RP, Topalof L, Bankaitis VA (2000) Lipid metabolism and regulation of membrane trafficking. Traffic 1:195–202CrossRef PubMed
    Jethva R, Bennett MJ, Vockley J (2008) Short-chain acyl-coenzyme A dehydrogenase deficiency. Mol Genet Metab 95:195–200. doi:10.​1016/​j.​ymgme.​2008.​09.​007 CrossRef PubMed PubMedCentral
    Ko KW, Erickson B, Lehner R (2009) Es-x/Ces1 prevents triacylglycerol accumulation in McArdle-RH7777 hepatocytes. Biochim Biophys Acta 1791:1133–1143. doi:10.​1016/​j.​bbalip.​2009.​07.​006 CrossRef PubMed
    Kramer A, Green J, Pollard J Jr, Tugendreich S (2014) Causal analysis approaches in ingenuity pathway analysis. Bioinformatics 30:523–530. doi:10.​1093/​bioinformatics/​btt703 CrossRef PubMed PubMedCentral
    Lavoinne A, Baquet A, Hue L (1987) Stimulation of glycogen synthesis and lipogenesis by glutamine in isolated rat hepatocytes. Biochem J 248:429–437CrossRef PubMed PubMedCentral
    Lee C-H, Olson P, Evans RM (2003) Minireview: lipid metabolism, metabolic diseases, and peroxisome proliferator-activated receptors. Endocrinology 144:2201–2207. doi:10.​1210/​en.​2003-0288 CrossRef PubMed
    Liu Y (2006) Fatty acid oxidation is a dominant bioenergetic pathway in prostate cancer. Prostate Cancer Prostatic Dis 9:230–234. doi:10.​1038/​sj.​pcan.​4500879 CrossRef PubMed
    Liu K, Czaja MJ (2013) Regulation of lipid stores and metabolism by lipophagy. Cell Death Differ 20:3–11. doi:10.​1038/​cdd.​2012.​63 CrossRef PubMed PubMedCentral
    Mates JM, Perez-Gomez C, Nunez de Castro I, Asenjo M, Marquez J (2002) Glutamine and its relationship with intracellular redox status, oxidative stress and cell proliferation/death. Int J Biochem Cell Biol 34:439–458CrossRef PubMed
    Nam KW, Kim YH, Kwon HJ, Rhee SK, Kim WJ, Han MD (2013) Tert-butylhydroquinone reduces lipid accumulation in C57BL/6 mice with lower body weight gain. Arch Pharm Res 36:897–904. doi:10.​1007/​s12272-013-0109-3 CrossRef PubMed
    Nguyen P, Leray V, Diez M, Serisier S, Le Bloc’h J, Siliart B, Dumon H (2008) Liver lipid metabolism. J Anim Physiol Anim Nutr 92:272–283. doi:10.​1111/​j.​1439-0396.​2007.​00752.​x CrossRef
    Nicklin P et al (2009) Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136:521–534. doi:10.​1016/​j.​cell.​2008.​11.​044 CrossRef PubMed PubMedCentral
    Okumoto K, Kametani Y, Fujiki Y (2011) Two proteases, trypsin domain-containing 1 (Tysnd1) and peroxisomal lon protease (PsLon), cooperatively regulate fatty acid beta-oxidation in peroxisomal matrix. J Biol Chem 286:44367–44379. doi:10.​1074/​jbc.​M111.​285197 CrossRef PubMed PubMedCentral
    Ouimet M, Franklin V, Mak E, Liao X, Tabas I, Marcel YL (2011) Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase. Cell Metab 13:655–667. doi:10.​1016/​j.​cmet.​2011.​03.​023 CrossRef PubMed PubMedCentral
    Papaconstantinou HT, Hwang KO, Rajaraman S, Hellmich MR, Townsend CM Jr, Ko TC (1998) Glutamine deprivation induces apoptosis in intestinal epithelial cells Surgery 124:152–159 (discussion 159–160 ) PubMed
    Parkes HA et al (2006) Overexpression of acyl-CoA synthetase-1 increases lipid deposition in hepatic (HepG2) cells and rodent liver in vivo. Am J Physiol Endocrinol Metab 291:E737–E744. doi:10.​1152/​ajpendo.​00112.​2006 CrossRef PubMed
    Rambold AS, Cohen S, Lippincott-Schwartz J (2015) Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics. Dev Cell 32:678–692. doi:10.​1016/​j.​devcel.​2015.​01.​029 CrossRef PubMed PubMedCentral
    Ruppen I et al (2010) Differential protein expression profiling by iTRAQ-two-dimensional LC–MS/MS of human bladder cancer EJ138 cells transfected with the metastasis suppressor KiSS-1 gene. Mol Cell Proteom MCP 9:2276–2291. doi:10.​1074/​mcp.​M900255-MCP200 CrossRef
    Savage DB, Petersen KF, Shulman GI (2007) Disordered lipid metabolism and the pathogenesis of insulin resistance. Physiol Rev 87:507–520. doi:10.​1152/​physrev.​00024.​2006 CrossRef PubMed PubMedCentral
    Schroeder F et al (2007) Sterol carrier protein-2: new roles in regulating lipid rafts and signaling. Biochim Biophys Acta 1771:700–718. doi:10.​1016/​j.​bbalip.​2007.​04.​005 CrossRef PubMed PubMedCentral
    Singh R et al (2009) Autophagy regulates lipid metabolism. Nature 458:1131–1135. doi:10.​1038/​nature07976 CrossRef PubMed PubMedCentral
    Sleat DE et al (2004) Genetic evidence for nonredundant functional cooperativity between NPC1 and NPC2 in lipid transport. Proc Natl Acad Sci 101:5886–5891. doi:10.​1073/​pnas.​0308456101 CrossRef PubMed PubMedCentral
    Smith RJ (1990) Glutamine metabolism and its physiologic importance. JPEN J Parenter Enter Nutr 14:40s–44sCrossRef
    Spector AA, Yorek MA (1985) Membrane lipid composition and cellular function. J Lipid Res 26:1015–1035PubMed
    Spiegel S, Foster D, Kolesnick R (1996) Signal transduction through lipid second messengers. Curr Opin Cell Biol 8:159–167CrossRef PubMed
    Stumvoll M, Perriello G, Meyer C, Gerich J (1999) Role of glutamine in human carbohydrate metabolism in kidney and other tissues. Kidney Int 55:778–792. doi:10.​1046/​j.​1523-1755.​1999.​055003778.​x CrossRef PubMed
    Vizcaino JA et al (2014) ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat Biotechnol 32:223–226. doi:10.​1038/​nbt.​2839 CrossRef PubMed PubMedCentral
    Wang JG et al (2014) A quantitative chemical proteomics approach to profile the specific cellular targets of andrographolide, a promising anticancer agent that suppresses tumor metastasis. Mol Cell Proteom 13:876–886. doi:10.​1074/​mcp.​M113.​029793 CrossRef
    Wise DR, Thompson CB (2010) Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci 35:427–433. doi:10.​1016/​j.​tibs.​2010.​05.​003 CrossRef PubMed PubMedCentral
    Xu J et al (2014) Hepatic carboxylesterase 1 is essential for both normal and farnesoid X receptor-controlled lipid homeostasis. Hepatology 59:1761–1771. doi:10.​1002/​hep.​26714 CrossRef PubMed PubMedCentral
    Yang C et al (2014) Glutamine oxidation maintains the TCA cycle and cell survival during impaired mitochondrial pyruvate transport. Mol Cell 56:414–424. doi:10.​1016/​j.​molcel.​2014.​09.​025 CrossRef PubMed PubMedCentral
    Zhang Y, Yang JM (2013) Altered energy metabolism in cancer: a unique opportunity for therapeutic intervention. Cancer Biol Ther 14:81–89. doi:10.​4161/​cbt.​22958 CrossRef PubMed PubMedCentral
    Zhang T, Yamamoto N, Ashida H (2014) Chalcones suppress fatty acid-induced lipid accumulation through a LKB1/AMPK signaling pathway in HepG2 cells. Food Funct 5:1134–1141. doi:10.​1039/​c3fo60694e CrossRef PubMed
    Zhao B, Natarajan R, Ghosh S (2005) Human liver cholesteryl ester hydrolase: cloning, molecular characterization, and role in cellular cholesterol homeostasis. Physiol Genom 23:304–310. doi:10.​1152/​physiolgenomics.​00187.​2005 CrossRef
    Zhu Y et al (2014) l -Glutamine deprivation induces autophagy and alters the mTOR and MAPK signaling pathways in porcine intestinal epithelial cells. Amino Acids. doi:10.​1007/​s00726-014-1785-0 PubMedCentral
  • 作者单位:Baisheng Long (1) (2)
    Rodiallah Muhamad (3)
    Guokai Yan (1) (2)
    Jie Yu (1) (2)
    Qiwen Fan (1) (2)
    Zhichang Wang (1) (2)
    Xiuzhi Li (1) (2)
    Agung Purnomoadi (3)
    Joelal Achmadi (3)
    Xianghua Yan (1) (2)

    1. College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
    2. The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
    3. Faculty of Animal and Agricultural Sciences, Diponegoro University, Tembalang Campus, Semarang, 50275, Central Java, Indonesia
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Biochemistry
    Analytical Chemistry
    Biochemical Engineering
    Life Sciences
    Proteomics
    Neurobiology
  • 出版者:Springer Wien
  • ISSN:1438-2199
  • 卷排序:48
文摘
Glutamine, a multifunctional amino acid, functions in nutrient metabolism, energy balance, apoptosis, and cell proliferation. Lipid is an important nutrient and controls a broad range of physiological processes. Previous studies have demonstrated that glutamine can affect lipolysis and lipogenesis, but the effect of glutamine on the detailed lipid metabolism remains incompletely understood. Here, we applied the quantitative proteomics approach to estimate the relative abundance of proteins in HepG2 cells treated by glutamine deprivation. The results showed that there were 212 differentially abundant proteins in response to glutamine deprivation, including 150 significantly increased proteins and 62 significantly decreased proteins. Interestingly, functional classification showed that 43 differentially abundant proteins were related to lipid metabolism. Further bioinformatics analysis and western blotting validation revealed that lipid accumulation may be affected by β-oxidation of fatty acid induced by glutamine deprivation in HepG2 cells. Together, our results may provide the potential for regulating lipid metabolism by glutamine in animal production and human nutrition. The MS data have been deposited to the ProteomeXchange Consortium with identifier PXD003387. Keywords Glutamine Lipid metabolism Fatty acid Quantitative proteomics HepG2 cells

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700