用户名: 密码: 验证码:
The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Science Objectives and Mast Unit Description
详细信息    查看全文
  • 作者:S. Maurice (1) sylvestre.maurice@irap.omp.eu
    R. C. Wiens (2)
    M. Saccoccio (3)
    B. Barraclough (2)
    O. Gasnault (1)
    O. Forni (1)
    N. Mangold (4)
    D. Baratoux (1)
    S. Bender (2)
    G. Berger (1)
    J. Bernardin (2)
    M. Berthé (5)
    N. Bridges (6)
    D. Blaney (7)
    M. Bouyé (8)
    P. Ca?s (9)
    B. Clark (10)
    S. Clegg (2)
    A. Cousin (1)
    D. Cremers (11)
    A. Cros (1)
    L. DeFlores (7)
    C. Derycke (12)
    B. Dingler (2)
    G. Dromart (13)
    B. Dubois (8)
    M. Dupieux (1)
    E. Durand (12)
    L. d’Uston (1)
    C. Fabre (14)
    B. Faure (3)
    A. Gaboriaud (3)
    T. Gharsa (1)
    K. Herkenhoff (15)
    E. Kan (7)
    L. Kirkland (16)
    D. Kouach (8)
    J.-L. Lacour (17)
    Y. Langevin (5)
    J. Lasue (12)
    S. Le Mouélic (4)
    M. Lescure (24)
    E. Lewin (18)
    D. Limonadi (7)
    G. Manhès (19)
    P. Mauchien (17)
    C. McKay (20)
    P.-Y. Meslin (1)
    Y. Michel (3)
    E. Miller (7)
    H. E. Newsom (21)
    G. Orttner (1)
    A. Paillet (3)
    L. Parès (1)
    Y. Parot (1)
    R. Pérez (3)
    P. Pinet (1)
    F. Poitrasson (22)
    B. Quertier (9)
    B. Sallé (117)
    C. Sotin (47)
    V. Sautter (23)
    H. Séran (1)
    J. J. Simmonds (7)
    J.-B. Sirven (17)
    R. Stiglich (2)
    N. Striebig (8)
    J.-J. Thocaven (1)
    M. J. Toplis (1)
    D. Vaniman (225)
  • 关键词:Mars – Spectroscopy – LIBS – Instruments – Planetary surfaces – Chemical composition
  • 刊名:Space Science Reviews
  • 出版年:2012
  • 出版时间:September 2012
  • 年:2012
  • 卷:170
  • 期:1-4
  • 页码:95-166
  • 全文大小:6.9 MB
  • 参考文献:1. R.B. Anderson, J.F. Bell, Geologic mapping and characterization of Gale Crater and implications for its potential as a Mars Science Laboratory landing site. Mars 5, 76–128 (2010)
    2. Z.A. Arp, D.A. Cremers, R.C. Wiens, D.M. Wayne, B. Salle, S. Maurice, Analysis of water ice and water ice/soil mixtures using laser-induced breakdown spectroscopy: application to Mars polar exploration. Appl. Spectrosc. 58, 897–909 (2004)
    3. R.A. Bagnold, The Physics of Blown Sand and Desert Dunes (Dover, London, 1941), 320 pages
    4. J.L. Bandfield, V.E. Hamilton, P.R. Christensen, H.Y. McSween, Identification of quartzofeldspathic materials on Mars. J. Geophys. Res. 109, E10009 (2004)
    5. D. Baratoux, M. Toplis, M. Monnereau, O. Gasnault, Thermal history of Mars inferred from orbital geochemistry of volcanic provinces. Nature 475, 254 (2011)
    6. G. Berger, M. Toplis, E. Treguier, C. d’Uston, P. Pinet, Evidence in favor of ephemeral and transient water during alteration at Meridiani Planum, Mars. Am. Mineral. 94, 1279–1282 (2009)
    7. J.P. Bibring, Y. Langevin, J.F. Mustard, F. Poulet, R. Arvidson, A. Gendrin, B. Gondet, N. Mangold, P. Pinet, F. Forget (The OMEGA Team), Global mineralogical and aqueous Mars history derived from the OMEGA/Mars express data. Science 312, 400–404 (2006)
    8. J.-P. Bibring, P. Lamy, Y. Langevin, A. Soufflot, M. Berthé, J. Borg, F. Poulet, S. Motola, CIVA, Space Science Reviews 128 (2007)
    9. J.D. Blacic, D.R. Petit, D.A. Cremers, N. Roessler, Laser-induced breakdown spectroscopy for remote elemental analysis of planetary surfaces. Proc. Int. Symp. Spectral Sens. (1992), pp. 302–312
    10. W.V. Boynton, W.C. Feldman, S.W. Squyres et al., Distribution of hydrogen in the near surface of Mars: evidence for subsurface ice deposits. Science 297, 81–85 (2002)
    11. J. Brückner, G. Dreibus, R. Rieder, H. W?nke, Refined data of APXS analyses of soils and rocks at the Mars pathfinder site: implications for surface chemistry. J. Geophys. Res. 108, E8094 (2003)
    12. B.A. Cantor, MOC observations of the 2001 Mars planet-encircling dust storm. Icarus 186, 60–96 (2007)
    13. M.H. Carr, Water on Mars (Oxford Univ. Press, New York, 1996), 229 pages
    14. M. Carr, J.W. Head, Geologic history of Mars. Earth Planet. Sci. Lett. 294, 185–203 (2010)
    15. S.M. Clegg, R.C. Wiens, J.E. Barefield, E. Sklute, M.D. Dyar, Quantitative remote laser induced breakdown spectroscopy by multivariate analysis. Spectrochim. Acta B 64, 79–88 (2009)
    16. M. Coche, T. Berthoud, P. Mauchien, P. Camus, Laser-enhanced ionization in a laser produced plasma at atmospheric pressure: theoretical and experimental considerations. Appl. Spectrosc. 43, 646–650 (1989)
    17. A. Cousin, S. Maurice, Y. Parot, Y. Michel, N. Le Roch, J. Dalmau, L. Parès, R. Pérez, A. Cros, R.C. Wiens (The ChemCam Team), ChemCam (MSL) autofocus capabilities. Lunar Planet. Sci. XL, 1684 (2009)
    18. A. Cousin, O. Forni, S. Maurice, O. Gasnault, C. Fabre, V. Sautter, R.C. Wiens, J. Mazoyer, Laser induced breakdown spectroscopy library for the Martian environment. Spectrochim. Acta B (2011). doi:
    19. D.A. Cremers, L.J. Radziemski, Detection of chlorine and fluorine in air by laser-induced breakdown spectroscopy. Anal. Chem. 55, 1252–1256 (1983)
    20. D.A. Cremers, L.J. Radziemski, Laser plasmas for chemical analysis, in Laser Spectroscopy and Its Applications, ed. by L.J. Radziemski, R.W. Solarz, J.A. Paisner (Marcel Dekker, New York, 1987) Chapter 5
    21. C. Dufour, N. Le Roch, M. Berthé, Y. Langevin, R. Perez, S. Saccoccio, O. Forni, S. Maurice, Determination of the first level image processing of the ChemCam instrument for the Mars Science Laboratory. ICSO (2010)
    22. E. Durand, C. Derycke, C. Simon-Boisson, S. Muller, B. Faure, M. Saccoccio, S. Maurice, Conduction cooled compact laser for ChemCam instrument. ICSO (2006)
    23. C. Fabre, S. Maurice, A. Cousin, R.C. Wiens, O. Forni, V. Sautter, D. Guillaume, Onboard calibration igneous targets for the Mars Science Laboratory Curiosity rover and the Chemistry Camera laser induced breakdown spectroscopy instrument. Spectrochim. Acta Part B 66, 280–289 (2011)
    24. B. Faure, M. Saccoccio, S. Maurice, E. Durand, C. Derycke, F. Montmessin, D. Bruneau, Development of a Compact Laser for ChemCam Instrument and Potential Use for Wind Measurement on Mars (SPIE Remote Sensing, Berlin, 2009)
    25. F. El-Baz, D. Prestel, Desert Varnish on Sand Grains from the Western Desert of Egypt: Importance of the Clay Component and Implications to Mars. LUNAR AND PLANETARY SCIENCE XI, 254–256 (1980)
    26. L.T. Elkins-Tanton, P.C. Hess, E.M. Parmentier, Possible formation of ancient crust on Mars through magma ocean processes. J. Geophys. Res. 110, E12S01 (2005)
    27. W.C. Feldman, W.V. Boynton, R.L. Tokar, T.H. Prettyman, O. Gasnault, S.W. Squyres, R.C. Elphic, D.J. Lawrence, S.L. Lawson, S. Maurice, G.W. McKinney, K.R. Moore, R.C. Reedy, Global distribution of neutrons from Mars: results from Mars Odyssey. Science 297, 75–78 (2002)
    28. W.C. Feldman, M.T. Mellon, S. Maurice, T.H. Prettyman, J.W. Carey, D.T. Vaniman, D.L. Bish, C.I. Fialips, S.J. Chipera, J.S. Kargel, R.C. Elphic, H.O. Funsten, D.J. Lawrence, R.L. Tokar, Hydrated states of MgSO4 at equatorial latitudes on Mars. Geophys. Res. Lett. 31, L16702 (2004)
    29. J. Flahaut, J.F. Mustard, C. Quantin, H. Clenet, P. Allemand, P. Thomas, Dikes of distinct composition intruded into Noachian-aged crust exposed in the walls of Valles Marineris. Geophys. Res. Lett. 38, L15202 (2011)
    30. F. Forget, R.M. Haberle, F. Montmessin, B. Levrard, J.W. Head, Formation of glaciers on Mars by atmospheric precipitation at high obliquity. Science 311, 368–371 (2006)
    31. O. Gasnault, J.G. Taylor, S. Karunatillake, J. Dohm, H. Newsom, O. Forni, P. Pinet, W.V. Boynton, Quantitative geochemical mapping of martian elemental provinces. Icarus 207, 226–247 (2010)
    32. R. Gellert, R. Rieder, R.C. Anderson, J. Bruckner, B.C. Clark, G. Dreibus, T. Economou, G. Klingelhofer, G.W. Lugmair, D.W. Ming, S.W. Squyres, C. d’Uston, H. Wanke, A. Yen, J. Zipfel, Chemistry of rocks and soils in Gusev Crater from the Alpha Particle X-ray spectrometer. Science 305, 829–832 (2004)
    33. R. Greeley, J.D. Iversen, Wind as a Geological Process: On Earth, Mars, Venus, and Titan (Cambridge University Press, Cambridge, 1985), 333 pages
    34. J. Grotzinger, D. Beaty, G. Dromart, S. Gupta, M. Harris, J. Hurowitz, G. Kocurek, S. Mclennan, R. Milliken, G. Ori, Sumner D. Mars, Sedimentary Geology: key concepts and outstanding questions. Astrobiology 11(1), 77–87 (2011)
    35. E.A. Guinness, R.E. Arvidson, I.H.D. Clark, M.K. Shepard, Optical scattering properties of terrestrial varnished basalts compared with rocks and soils at the Viking Lander sites. J. Geophys. Res. 102(E12), 28687–28704 (1997)
    36. R.L. Huguenin, K.J. Miller, W.S. Harwood, Frost weathering on Mars: experimental evidence for peroxide formation. J. Mol. Evol. 14, 57–64 (1979)
    37. J. Lasue, R. Wiens, T. Stepinski, O. Forni, S. Clegg, S. Maurice (The ChemCam Team), Nonlinear mapping technique for data visualization and clustering assessment of LIBS data: application to ChemCam data. Anal. Bioanal. Chem. 1–14 (2011)
    38. N. Le Roch, J. Dalmau, L. Pares, H. Valentin, K. Gasc, B. Faure, C. Dufour, Y. Parot, A. Paillet, J. Sanisidro, R. Pérez, M. Saccoccio, A. Cousin, A. Cros, S. Maurice, ChemCam on the next NASA mission to Mars (MSL 2011): Measured performances of the high power LIBS laser beam. ICSO (2010)
    39. N. Mangold, V. Ansan, Ph. Mason, C. Vincendon, Estimate of Aeolian thickness in Arabia Terra, Mars: Implications of a thick mantle (>20 m) for hydrogen detection. Géomorphologie 1, 23–32 (2009)
    40. S. Maurice, R. Wiens, L. Parès, S. Bender, N. le Roch, J. Dalmau, M. Berthé, Y. Langevin, K. Herkenhoff, N. Bridges, Characterization of ChemCam (MSL) imaging capability. Lunar Planet. Sci. XL, 1864 (2009)
    41. S. Maurice, W.C. Feldman, B. Diez, O. Gasnault, D.J. Lawrence, A. Pathare, T. Prettyman, Mars Odyssey neutron data: 1. Data processing and models of water-equivalent-hydrogen distribution. J. Geophys. Res. 116, E011008 (2011)
    42. S. Maurice, A. Cousin, R.C. Wiens, O. Gasnault, L. Parès, O. Forni, P.-Y. Meslin, S. Clegg (The ChemCam Team), Laser Induced Breakdown Spectroscopy (LIBS) spot size at stand-off distances with ChemCam. Lunar Planet. Sci. XLIII, 1659 (2012)
    43. H.Y. McSween, S.W. Ruff, R.V. Morris, J.F. Bell, K. Herkenhoff, R. Gellert, K.R. Stockstill, L.L. Tornabene, S.W. Squyres, J.A. Crisp, P.R. Christensen, T. McCoy, D.W. Mittlefehldt, M. Schmidt, Alkaline volcanic rocks from the Columbia Hills, Gusev crater. Mars. J. Geophys. Res. 111, E09S91 (2006)
    44. H.Y. McSween, I.O. McGlynn, A.D. Rogers, Determining the modal mineralogy of Martian soils. J. Geophys. Res. 115, E00F12 (2010)
    45. Y. Michel, E. Condé, D. Kouach, M. Simpfenderfer, Y. Parot, G. Orttner, M. Saccoccio, S. Maurice, ChemCam screw/nut Autofocus Mechanism: Qualification Data and Guidelines for Space-Use of Ground Equipments (ESMATS, Vienna, 2009)
    46. R.E. Milliken, G.A. Swayze, R.E. Arvidson, J.L. Bishop, R.N. Clark, B.L. Ehlmann, R.O. Green, J.P. Grotzinger, R.V. Morris, S.L. Murchie, J.F. Mustard, C. Weitz, Opaline silica in young deposits on Mars. Geology 36(11), 847–850 (2008)
    47. D.W. Ming, D.W. Mittlefehldt, R.V. Morris, D.C. Golden, R. Gellert, A. Yen, B.C. Clark, S.W. Squyres, W.H. Farrand, S.W. Ruff, R.E. Arvidson, G. Klingelhofer, H.Y. McSween, D.S. Rodionov, C. Schroder, P.A. de Souza, A. Wang, Geochemical and mineralogical indicators for aqueous processes in the Columbia Hills of Gusev crater. Mars. J. Geophys. Res. 111, E02S12 (2006)
    48. S. Murchie, L. Roach, F. Seelos, R. Milliken, J. Mustard, R. Arvidson, S. Wiseman, K. Lichtenberg, J. Andrews-Hann, J. Bishop, J.-P. Bibring, M. Parente, R. Morris, Evidence for the origin of layered deposits in Candor Chasma, Mars, from mineral composition and hydrologic modeling. J. Geophys. Res. 114, E12 (2009)
    49. A.M. Ollila, J.G. Blank, R.C. Wiens, J. Lasue, H.E. Newsom, S.M. Clegg, A. Cousin, S. Maurice, Preliminary results on the capabilities of the ChemCam laser-induced breakdown spectroscopy (LIBS) instrument to detect carbon on Mars. Lunar Planet. Sci. XLII, 2395 (2011)
    50. R. Pérez, B.L. Barraclough, S.C. Bender, A. Cousin, A. Cros, L. DeFlores, N. LeRoch, S. Maurice, A. Paillet, L. Pares, Y. Parot, M. Saccoccio, R.C. Wiens, The ChemCam instrument for the 2011 Mars science laboratory mission : system requirements and performances. IPPW (2011)
    51. F. Poulet, N. Mangold, B. Platevoet, J.-M. Bardintzeff, V. Sautter, J.F. Mustard, J.-P. Bibring, P. Pinet, Y. Langevin, B. Gondet, A. Aléon-Toppani, Quantitative compositional analysis of Martian mafic regions using the MEx/OMEGA reflectance data: 2. Petrological implications. Icarus 201, 84–101 (2009)
    52. H.G. Reading, Sedimentary Environments: Processes, Facies and Stratigraphy, 3rd edn. (Blackwell Science, Boston, 1996), 688 pages
    53. N.O. Rennó, B.J. Bos, D. Catling, B.C. Clark, L. Drube, D. Fisher, W. Goetz, S.F. Hviid, H.U. Keller, J.F. Kok, S.P. Kounaves, K. Leer, M. Lemmon, M.B. Madsen, W.J. Markiewicz, J. Marshall, C. McKay, M. Mehta, M. Smith, M.P. Zorzano, P.H. Smith, C. Stoker, S.M.M. Young, Possible physical and thermodynamical evidence for liquid water at the Phoenix landing site. J. Geophys. Res. 114, E00E03 (2009)
    54. L.H. Roach, J.F. Mustard, S.L. Murchie, J.-P. Bibring, F. Forget, K.W. Lewis, O. Aharonson, M. Vincendon, J.L. Bishop, Testing evidence of recent hydration state change in sulfates on Mars. J. Geophys. Res. 114, E00D02 (2009)
    55. S.W. Ruff, P.R. Christensen, Bright and dark regions on Mars: Particle size and mineralogical characteristics based on Thermal Emission Spectrometer data. J. Geophys. Res. 107 (2002)
    56. M. Saccoccio, S. Maurice, R. Wiens, B. Barraclough, J. Bernardin, A. Cros, S. Bender, S. Clegg, L. Parès, K. Gasc, D. Kouach, B. Dubois, M. Bouye, J. Thocaven, H. Seran, Y. Parot, G. Orttner, B. Faure, Y. Michel, P. Cai’s, M. Berthe, R. Perez, R. Stiglich, D. Landis, T. Hale, D. Blaney, C. Hayes, C. Lindensmith, T. Elliott, ChemCam on MSL 2009: first laser-induced breakdown spectrometer for space science. ICSO (2008)
    57. B. Sallé, P. Mauchien, S. Maurice, Laser-induced breakdown spectroscopy in open-path configuration for the analysis of distant objects. Spectrochim. Acta B 62(8), 739–768 (2007)
    58. J.W. Schopf, Paleobiology of the Archean. in The Proterozoic Biosphere, a Multidisciplinary Study, ed. by J.W. Schopf, C. Klein (CUP, New-York, 1992), pp. 25–39
    59. C. Schr?der, D.S. Rodionov, T. McCoy, B.L. Jolliff, R. Gellert, L.R. Nittler, W.H. Farrand, J.R. Johnson, S.W. Ruff, J.W. Ashley, D.W. Mittlefehldt, K.E. Herkenhoff, I. Fleischer, A.F.C. Haldemann, G. Klingelh?fer, D.W. Ming, R.V. Morris, P.A. de Souza, S.W. Squyres, C. Weitz, A.S. Yen, J. Zipfel, T. Economou, Meteorites on Mars observed with the Mars exploration rovers. J. Geophys. Res. 113, E06S22 (2008)
    60. A.E. Siegman, Defining, measuring, and optimizing laser beam quality. Proc. SPIE 1868, 2 (1993)
    61. S.W. Squyres, J.P. Grotzinger, R.E. Arvidson, J.F. Bell, W. Calvin, P.R. Christensen, B.C. Clark, J.A. Crisp, W.H. Farrand, K.E. Herkenhoff, J.R. Johnson, G. Klingelhofer, A.H. Knoll, S.M. McLennan, H.Y. McSween, R.V. Morris, J.W. Rice, R. Rieder, L.A. Soderblom, In-situ evidence for an ancient aqueous environment at Meridiani Planum Mars. Science 306, 1709–1714 (2004)
    62. S.W. Squyres, A.H. Knoll, R.E. Arvidson, B.C. Clark, J.P. Grotzinger, B.L. Jolliff, S.M. McLennan, N. Tosca, J.F. Bell, W.M. Calvin, W.H. Farrand, T.D. Glotch, M.P. Golombek, K.E. Herkenhoff, J.R. Johnson, G. Klingelhoefer, H.Y. McSween, A.S. Yen, Two years at Meridiani Planum: results from the opportunity rover. Science 313, 1403–1407 (2006a)
    63. S.W. Squyres, R.E. Arvidson, D. Bollen, J.F. Bell, J. Brückner, N.A. Cabrol, W.M. Calvin, M.H. Carr, P.R. Christensen, B.C. Clark, L. Crumpler, D.J. Des Marais, C. d’Uston, T. Economou, J. Farmer, W.H. Farrand, W. Folkner, R. Gellert, T.D. Glotch, M. Golombek, S. Gorevan, J.A. Grant, R. Greeley, J. Grotzinger, K.E. Herkenhoff, S. Hviid, J.R. Johnson, G. Klingelh?fer, A.H. Knoll, G. Landis, M. Lemmon, R. Li, M.B. Madsen, M.C. Malin, S.M. McLennan, H.Y. McSween, D.W. Ming, J. Moersch, R.V. Morris, T. Parker, J.W. Rice, L. Richter, R. Rieder, C. Schr?der, M. Sims, M. Smith, P. Smith, L.A. Soderblom, R. Sullivan, N.J. Tosca, H. W?nke, T. Wdowiak, M. Wolff, A. Yen, Overview of the opportunity Mars exploration rover mission to Meridiani planum: eagle crater to Purgatory ripple. J. Geophys. Res. 111(12), E12S12 (2006b)
    64. S.W. Squyres, R.E. Arvidson, S. Ruff, R. Gellert, R.V. Morris, D.W. Ming, L. Crumpler, J.D. Farmer, D.J. Des Marais, A. Yen, S.M. McLennan, W. Calvin, J.F. Bell, B.C. Clark, A. Wang, T.J. McCoy, M.E. Schmidt, P.A. de Souza, Detection of silica-rich deposits on Mars. Science 320(5879), 1063 (2008)
    65. E. Tréguier, C. d’Uston, P. Pinet, G. Berger, M. Toplis, T. McCoy, R. Gellert, J. Brückner, Overview of Mars surface geochemical diversity through APXS data multidimensional analysis: first attempt at modelling rock alteration. J. Geophys. Res. 113, E12S34 (2008)
    66. D.T. Vaniman, D.L. Bish, S.J. Chipera, C.I. Fialips, J.W. Carey, W.C. Feldman, Magnesium sulfate salts and the history of water on Mars. Nature 431, 663–665 (2004)
    67. N. Valette, C. Grèzes-Besset, D. Torricini, S. Maurice, L. Parès, M. Saccoccio, K. Gasc, Study of Ageing of ion assisted deposited multilayer components for ChemCam instrument of spectroscopic analysis on Mars. ICSO (2008)
    68. H. W?nke, J. Brückner, G. Dreibus, R. Rieder, I. Ryabchikov, Chemical composition of rocks and soils at the Pathfinder site. Space Sci. Rev. 96, 317–330 (2001)
    69. G.E. Webb, B.S. Kamber, Trace element Geochemistry as a tool for interpreting microbialites, in Earliest Life on Earth: Habitats, Environments and Methods of Detection, ed. by D. Golding, M. Glikson (Springer, Berlin, 2010), pp. 127–170
    70. R.C. Wiens, S. Maurice, (The ChemCam Team), The ChemCam Instrument Suite on the Mars Science Laboratory Rover Curiosity: remote sensing by laser-induced plasmas. Geochem. News 145 (2011). Special issue: Curiosity on Mars: Geochemical Instrumentation and Context Observations
    71. A.P. Zent, C.P. McKay, The chemical reactivity of the Martian soil and implications for future missions. Icarus 108, 146–157 (1994)
    72. J. Zipfel, R. Anderson, J. Brückner, B.C. Clark, G. Dreibus, T. Economou, R. Gellert, G. Klingelh?fer, G.W. Lugmair, D.W. Ming, R. Rieder, S.W. Squyres, C. d’Uston, H. W?nke, A. Yen, A.S. Team, APXS analyses of Bounce Rock—the first shergottite on Mars. Meteorit. Planet. Sci. 39, A118 (2004)
    73. J. Zipfel, C. Schr?der, B.L. Jolliff, R. Gellert, K.E. Herkenhoff, R. Rieder, R. Anderson, J.F. Bell, J. Brückner, J.A. Crisp, P.R. Christensen, B.C. Clark, P.A. de Souza, G. Dreibus, C. d’Uston, T. Economou, S.P. Gorevan, B.C. Hahn, G. Klingelh?fer, T.J. McCoy, H.Y. McSween, D.W. Ming, R.V. Morris, D.S. Rodionov, S.W. Squyres, H. W?nke, S.P. Wright, M.B. Wyatt, A.S. Yen, Bounce Rock—a shergottite-like basalt encountered at Meridiani Planum, Mars. Meteorit. Planet. Sci. 46(1), 1–20 (2011)
    74. P. Zivojinovic, M. Lescure, H. Tap-Beteille, Design and stability analysis of a CMOS feedback laser driver. IEEE Trans. Instrum. Meas. 53, 102–108 (2004)
  • 作者单位:1. Institut de Recherche en Astrophysique et Planétologie, Univ. Paul Sabatier-CNRS-Obs. Midi-Pyrénées, Toulouse, France2. Los Alamos National Laboratory, Los Alamos, NM, USA3. Centre National d’Etudes Spatiales, Toulouse, France4. Laboratoire de Planétologie et Géodynamique, Université Nantes-CNRS, Nantes, France5. Institut d’Astrophysique Spatiale, Université Paris Sud & CNRS, Orsay, France6. Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, USA7. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA8. Groupe d’Instrumentation Scientifique, Observatoire Midi-Pyrénées, Toulouse, France9. Laboratoire d’Astrophysique de Bordeaux, Univ. Bordeaux, CNRS, Floirac, France10. Space Science Institute, Boulder, CO, USA11. Applied Research Associates, Albuquerque, NM, USA12. Thalès Optronique Sa, Elancourt, France13. Laboratoire de Géologie de Lyon, Université de Lyon-ENS de Lyon, Lyon, France14. Géologie et Gestion des Ressources Minérales et énergétiques, Univ. Lorraine-CNRS, Vand?uvre, France15. U.S. Geological Survey, Astrogeology Science Center, Flagstaff, AZ, USA16. Lunar and Planetary Institute, Houston, TX, USA17. Department of Physical Chemistry, CEA, DEN, Gif-sur-Yvette, France18. Institut des Sciences de la Terre, Université Grenoble 1-CNRS, Grenoble, France19. Institut de Physique du Globe, Paris, France20. NASA Ames Research Center, Mountain View, CA, USA21. University of New Mexico, Albuquerque, NM, USA22. Géosciences Environnement Toulouse, CNRS, Toulouse, France23. Lab. de Minéralogie et Cosmochimie, CNRS, Museum National d’Histoire Naturelle, Paris, France24. Laboratoire d’Analyse et d’Architecture des Systèmes, CNRS, Toulouse, France25. Planetary Science Institute, Tucson, AZ, USA
  • ISSN:1572-9672
文摘
ChemCam is a remote sensing instrument suite on board the “Curiosity” rover (NASA) that uses Laser-Induced Breakdown Spectroscopy (LIBS) to provide the elemental composition of soils and rocks at the surface of Mars from a distance of 1.3 to 7 m, and a telescopic imager to return high resolution context and micro-images at distances greater than 1.16 m. We describe five analytical capabilities: rock classification, quantitative composition, depth profiling, context imaging, and passive spectroscopy. They serve as a toolbox to address most of the science questions at Gale crater. ChemCam consists of a Mast-Unit (laser, telescope, camera, and electronics) and a Body-Unit (spectrometers, digital processing unit, and optical demultiplexer), which are connected by an optical fiber and an electrical interface. We then report on the development, integration, and testing of the Mast-Unit, and summarize some key characteristics of ChemCam. This confirmed that nominal or better than nominal performances were achieved for critical parameters, in particular power density (>1 GW/cm2). The analysis spot diameter varies from 350 μm at 2 m to 550 μm at 7 m distance. For remote imaging, the camera field of view is 20 mrad for 1024×1024 pixels. Field tests demonstrated that the resolution (~90 μrad) made it possible to identify laser shots on a wide variety of images. This is sufficient for visualizing laser shot pits and textures of rocks and soils. An auto-exposure capability optimizes the dynamical range of the images. Dedicated hardware and software focus the telescope, with precision that is appropriate for the LIBS and imaging depths-of-field. The light emitted by the plasma is collected and sent to the Body-Unit via a 6 m optical fiber. The companion to this paper (Wiens et al. this issue) reports on the development of the Body-Unit, on the analysis of the emitted light, and on the good match between instrument performance and science specifications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700