用户名: 密码: 验证码:
Synthesis, characterization, and property testing of PGS/P(AMPS-co-AM) superabsorbent hydrogel initiated by glow-discharge electrolysis plasma
详细信息    查看全文
  • 作者:Jie Yu ; Haitao Zhang ; Yun Li ; Quanfang Lu ; Qizhao Wang…
  • 关键词:Superabsorbent hydrogel ; Glow ; discharge electrolysis plasma (GDEP) ; Palygorskite (PGS) ; Graft copolymerization ; Swelling behavior ; Adsorption
  • 刊名:Colloid & Polymer Science
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:294
  • 期:2
  • 页码:257-270
  • 全文大小:2,574 KB
  • 参考文献:1.Zheng Y, Gao TP, Wang AQ (2008) Preparation, swelling, and slow-release characteristics of superabsorbent composite containing sodium humate. Ind Eng Chem Res 47:1766–1773CrossRef
    2.Massoud A, Waly SA (2014) Preparation and characterization of poly (acrylic acid-dimethylaminoethylmethacrylate) as amphoteric exchange resin and its adsorption properties. Colloid Polym Sci 292:3077–3083CrossRef
    3.Appel EA, del Barrio J, Loh XJ, Scherman OA (2012) Supramolecular polymeric hydrogels. Chem Soc Rev 41:6195–6214CrossRef
    4.Li SF, Zhang H, Feng JT, Xu R, Liu XL (2011) Facile preparation of poly(acrylic acid-acrylamide) hydrogels by frontal polymerization and their use in removal of cationic dyes from aqueous solution. Desalination 280:95–102CrossRef
    5.Ismail LFM, Maziad NA, Abo-Farha SA (2005) Factors affecting the adsorption of cationic dyes on polymeric hydrogels prepared by gamma irradiation. Polym Int 54:58–64CrossRef
    6.Yu J, Yang GG, Li Y, Yang W, Gao JZ, Lu QF (2013) Synthesis, characterization, and swelling behaviors of acrylic acid/carboxymethyl cellulose superabsorbent hydrogel by glow-discharge electrolysis plasma. Polym Eng Sci 54:2310–2320CrossRef
    7.Kabiri K, Zohuriaan-Mehr MJ (2004) Porous superabsorbent hydrogel composites: synthesis, morphology and swelling rate. Macromol Mater Eng 289:653–661CrossRef
    8.Zhang JP, Chen H, Wang AQ (2006) Study on superabsorbent composite. IV. Effects of organification degree of attapulgite on swelling behaviors of polyacrylamide/organo-attapulgite composites. Eur Polym J 42:101–108CrossRef
    9.Liu Y, Zheng Y, Wang AQ (2010) Enhanced adsorption of methylene blue from aqueous solution by chitosan-g-poly(acrylic acid)/vermiculite hydrogel composites. J Environ Sci-China 22:486–493CrossRef
    10.Wu J, Lin J, Zhou M, Wei C (2000) Synthesis and properties of starch-graft-polyacrylamide/clay superabsorbent composite. Macromol Rapid Commun 21:1032–1034CrossRef
    11.Şen M, Hayrabolulu H (2012) Radiation synthesis and characterisation of the network structure of natural/synthetic double-network superabsorbent polymers. Radiat Phys Chem 81:1378–1382CrossRef
    12.Sawut A, Yimit M, Sun W, Nurulla I (2014) Photopolymerisation and characterization of maleylatedcellulose-g-poly(acrylic acid) superabsorbent polymer. Carbohyd Polym 101:231–239CrossRef
    13.Gao JZ, Wang AX, Li Y, Fu Y, Wu JL, Wang YD, Wang YJ (2008) Synthesis and characterization of superabsorbent composite by using glow discharge electrolysis plasma. React Funct Polym 68:1377–1383CrossRef
    14.Gao JZ, Ma DL, Lu QF, Li Y, Li XF, Yang W (2010) Synthesis and characterization of montmorillonite-graft-acrylic acid superabsorbent by using glow-discharge electrolysis plasma. Plasma Chem Plasma Process 30:873–883CrossRef
    15.Wang XY, Zhou MH, Jin XL (2012) Application of glow discharge plasma for wastewater treatment. Electrochim Acta 83:501–512CrossRef
    16.Harada K, Iwasaki T (1977) Syntheses of amino acids from aliphatic carboxylic acid by glow discharge electrolysis. Nature 250:426–428CrossRef
    17.Harada K, Suzuki S (1977) Formation of amino acids from elemental carbon by glow discharge electrolysis. Nature 266:275–276CrossRef
    18.Malik MA, Ghaffar A, Malik SA (2001) Water purification by electrical discharges. Plasma Sources Sci Technol 10:82–91CrossRef
    19.Tezuka M, Iwasaki M (1998) Plasma induced degradation of chlorophenols in an aqueous solution. Thin Solid Films 316:123–127CrossRef
    20.Lu QF, Yu J, Gao JZ (2006) Degradation of 2,4-dichlorophenol by using glow discharge electrolysis. J Hazard Mater 136:526–531CrossRef
    21.Friedrich JF, Mix R, Schulze RD (2008) New plasma techniques for polymer surface modification with monotype functional groups. Plasma Process Polym 5:407–423CrossRef
    22.Djowe AT, Laminsi S, Njopwouo D, Acayanka E, Gaigneaux EM (2013) Surface modification of smectite clay induced by nonthermal gliding arc plasma at atmospheric pressure. Plasma Chem Plasma Process 33:707–723CrossRef
    23.Lu QF, Yu J, Gao JZ, Yang W, Li Y (2011) Glow-discharge electrolysis plasma induced synthesis of polyvinylpyrrolidone/acrylic acid hydrogel and its adsorption properties for heavy-metal ions. Plasma Process Polym 8:803–814CrossRef
    24.Yu J, Pan YP, Lu QF, Yang W, Gao JZ, Li Y (2013) Synthesis and swelling behaviors of P(AMPS-co-AAc) superabsorbent hydrogel produced by glow-discharge electrolysis plasma. Plasma Chem Plasma Process 33:219–235CrossRef
    25.Neaman A, Singer A (2004) Possible use of the Sacalum (Yucatan) palygorskite as drilling muds. Appl Clay Sci 25:121–124CrossRef
    26.Yadav M, Rhee KY (2012) Superabsorbent nanocomposite (alginate-g-PAMPS/MMT): synthesis, characterization and swelling behavior. Carbohyd Polym 90:165–173CrossRef
    27.Abd El-Mohdy HL (2013) Radiation initiated synthesis of 2-acrylamidoglycolic acid grafted carboxymethyl cellulose as pH-sensitive hydrogel. Polymer Engineering Science 54:2753–2761CrossRef
    28.Joshi AA, Locke BR, Arce P, Finney WC (1995) Formation of hydroxyl radicals, hydrogen peroxide and aqueous electrons by pulsed streamer corona discharge in aqueous solution. J Hazard Mater 41:3–30CrossRef
    29.Hickling A, Ingram MD (1964) Glow-discharge electrolysis. J Electroanal Chem 8:65–81
    30.Sengupta SK, Singh R, Srivastva AK (1998) A study on the nonfaradaic yields of anodic contact glow discharge electrolysis using cerous ion as the scavenger: an estimate of the primary yield of OH radicals. Indian J Chem A 37:558–560
    31.Sun B, Sato M, Clements JS (1997) Optical study of active species produced by a pulsed streamer corona discharge in water. J Electrost 39:189–202CrossRef
    32.Brisset JL, Moussa D, Doubla A, Hnatiuc E, Hnatiuc B, Youbi GK, Herry JM, Naïtali M, Bellon-Fontaine MN (2008) Chemical reactivity of discharges and temporal post-discharges in plasma treatment of aqueous media: examples of gliding discharge treated solutions. Ind Eng Chem Res 47:5761–5781CrossRef
    33.Malik MA, Ahmed M, Rehman E, Naheed R, Ghaffar A (2003) Synthesis of superabsorbent copolymers by pulsed corona discharges in water. Plasmas Polym 8:271–279CrossRef
    34.Chisholm JE (1992) Powder diffraction patterns and structural models for palygorskite. Can Mineral 30:61–73
    35.Lei XP, Liu YS, Su ZX (2008) Synthesis and characterization of organo-attapulgite/polyaniline-dodecylbenzenesulfonic acid based on emulsion polymerization method. Polym Compos 29:239–244CrossRef
    36.Zhang JP, Wang Q, Wang AQ (2007) Synthesis and characterization of chitosan-g-poly(acrylic acid)/attapulgite superabsorbent composites. Carbohyd Polym 68:367–374CrossRef
    37.Limparyoon N, Seetapan N, Kiatkamjornwong S (2011) Acrylamide/2-acrylamido-2-methylpropane sulfonic acid and associated sodium salt superabsorbent copolymer nanocomposites with mica as fire retardants. Polym Degrad Stabil 96:1054–1063CrossRef
    38.Bao Y, Ma JZ, Li N (2011) Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly(AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel. Carbohyd Polym 84:76–82CrossRef
    39.Peng ZQ, Chen DJ (2006) Alignment effect of attapulgite on the mechanical properties of poly(vinyl alcohol)/attapulgite nanocomposite fibers. J Polym Sci B Polym Phys 44:1995–2000CrossRef
    40.Li A, Wang AQ (2005) Synthesis and properties of clay-based superabsorbent composite. Eur Polym J 41:1630–1637CrossRef
    41.Karadag E, Uzum OB, Saraydin D (2005) Water uptake in chemically crosslinked poly(acrylamide-co-crotonic acid) hydrogels. Mater Des 26:265–270CrossRef
    42.Spagnol C, Rodrigues FHA, Pereira AGB, Fajardo AR, Rubira AF, Muniz EC (2012) Superabsorbent hydrogel composite made of cellulose nanofibrils and chitosan-graft-poly(acrylic acid). Carbohyd Polym 87:2038–2045CrossRef
    43.Pourjavadi A, Barzegar S, Zeidabadi F (2007) Synthesis and properties of biodegradable hydrogels of κ-carrageenan grafted acrylic acid-co-2-acrylamido-2-methylpropanesulfonic acid as candidates for drug delivery systems. React Funct Polym 67:644–654CrossRef
    44.Spagnol C, Rodrigues FHA, Neto AGVC, Pereira AGB, Fajardo AR, Radovanovic E, Rubira AF, Muniz EC (2012) Nanocomposites based on poly(acrylamide-co-acrylate) and cellulose nanowhiskers. Eur Polym J 48:454–463CrossRef
    45.Lu QF, Yu J, Gao JZ, Yang W, Li Y (2012) A promising absorbent of acrylic acid/poly(ethylene glycol) hydrogel prepared by glow-discharge electrolysis plasma. Cent Eur J Chem 10:1349–1359CrossRef
    46.Vimonses V, Lei SM, Jin B, Chow CWK, Saint C (2009) Kinetic study and equilibrium isotherm analysis of Congo red adsorption by clay materials. Chem Eng J 148:354–364CrossRef
    47.Lorenc-Grabowska E, Gryglewicz G (2007) Adsorption characteristics of Congo red on coal-based mesoporous activated carbon. Dyes Pigments 74:34–40CrossRef
    48.Barkakati P, Begum A, Das ML, Rao PG (2010) Adsorptive separation of ginsenoside from aqueous solution by polymeric resins: equilibrium, kinetic and thermodynamic studies. Chem Eng J 161:34–45CrossRef
    49.Crini G (2008) Kinetic and equilibrium studies on the removal of cationic dyes from aqueous solution by adsorption onto a cyclodextrin polymer. Dyes Pigments 77:415–426CrossRef
    50.Yu J, Yang GG, Pan YP, Lu QF, Yang W, Gao JZ (2014) Poly (acrylamide-co-acrylic acid) hydrogel induced by glow-discharge electrolysis plasma and its adsorption properties for cationic dyes. Plasma Sci Technol 16:767–776CrossRef
    51.Reddy DHK, Lee SM (2013) Application of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions. Adv Colloid Interf Sci 201-202:68–93CrossRef
    52.Crini G, Peindy HN, Gimbert F, Robert C (2007) Removal of C.I. Basic green 4 (malachite green) from aqueous solutions by adsorption using cyclodextrin-based adsorbent: kinetic and equilibrium studies. Sep Purifi Technol 53:97–110CrossRef
    53.Wong YC, Szeto YS, Cheung WH, McKay G (2004) Adsorption of acid dyes on chitosan-equilibrium isotherm analyses. Process Biochem 39:693–702CrossRef
  • 作者单位:Jie Yu (1)
    Haitao Zhang (1)
    Yun Li (1)
    Quanfang Lu (1) (2)
    Qizhao Wang (1)
    Wu Yang (1)

    1. Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, People’s Republic of China
    2. Editorial Department of the University Journal, Northwest Normal University, Lanzhou, 730070, People’s Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Polymer Sciences
    Physical Chemistry
    Soft Matter and Complex Fluids
    Characterization and Evaluation Materials
    Food Science
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1435-1536
文摘
A palygorskite/poly(2-acrylamido-2-methyl-1-propanesulfonic acid-co-acrylamide) (PGS/P(AMPS-co-AM)) superabsorbent hydrogel was prepared in aqueous solution using glow-discharge electrolysis plasma (GDEP) as an initiator and N,N′-methylene-bis-acrylamide as a cross-linker. A possible copolymerization mechanism initiated by GDEP was proposed. The structure, thermal stability, and morphology of PGS/P(AMPS-co-AM) were characterized by FT-IR, XRD, TG-DTG, and SEM. The swelling kinetics, pH-reversibility, and influence of various pH and salt solutions on the swelling were investigated. Adsorption kinetics and adsorption mechanism of hydrogel for dyes were studied in detail. The results indicated that the equilibrium swelling of hydrogel is 652.6 g g−1 in distilled water. The swelling of the hydrogel in salt solutions from highest to lowest is Na+ > Mg2+ > Fe3+. The hydrogel has pH-reversibility responsive to the pH and salts solutions. The adsorption process of dyes follows the pseudo-second-order kinetic model with multi-step diffusion process. In addition, PGS/P(AMPS-co-AM) hydrogel can be regenerated and reused. Keywords Superabsorbent hydrogel Glow-discharge electrolysis plasma (GDEP) Palygorskite (PGS) Graft copolymerization Swelling behavior Adsorption

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700