用户名: 密码: 验证码:
Variational Analysis on Local Sharp Minima via Exact Penalization
详细信息    查看全文
文摘
In this paper we study local sharp minima of the nonlinear programming problem via exact penalization. Utilizing generalized differentiation tools in variational analysis such as subderivatives and regular subdifferentials, we obtain some primal and dual characterizations for a penalty function associated with the nonlinear programming problem to have a local sharp minimum. These general results are then applied to the ℓp penalty function with 0 ≤ p ≤ 1. In particular, we present primal and dual equivalent conditions in terms of the original data of the nonlinear programming problem, which guarantee that the ℓp penalty function has a local sharp minimum with a finite penalty parameter in the case of \(p\in (\frac {1}{2}, 1]\) and \(p=\frac {1}{2}\) respectively. By assuming the Guignard constraint qualification (resp. the generalized Guignard constraint qualification), we also show that a local sharp minimum of the nonlinear programming problem can be an exact local sharp minimum of the ℓp penalty function with p ∈ [0, 1] (resp. \(p\in [0, \frac {1}{2}]\)). Finally, we give some formulas for calculating the smallest penalty parameter for a penalty function to have a local sharp minimum.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700