用户名: 密码: 验证码:
An upgraded scheme of surface physics for Antarctic ice sheet and its implementation in the WRF model
详细信息    查看全文
  • 作者:Yao Yao ; Jianbin Huang ; Yong Luo ; Zongci Zhao
  • 关键词:Regional climate model ; Antarctica ; Surface temperature ; Ice sheet
  • 刊名:Chinese Science Bulletin
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:61
  • 期:7
  • 页码:576-584
  • 全文大小:1,700 KB
  • 参考文献:1.Bamber JL, Riva REM, Vermeersen BLA et al (2009) Reassessment of the potential sea-level rise from a collapse of the west antarctic ice sheet. Science 324:901–903CrossRef
    2.Zwally HJ, Li J, Robbins JW et al (2015) Mass gains of the Antarctic ice sheet exceed losses. J Glaciol 61:1019–1036CrossRef
    3.Durand G, Pattyn F (2015) Reducing uncertainties in projections of Antarctic ice mass loss. Cryosphere 9:2043–2055CrossRef
    4.Gao X, Shi Y, Song R et al (2008) Reduction of future monsoon precipitation over China: comparison between a high resolution RCM simulation and the driving GCM. Meteorol Atmos Phys 100:73–86CrossRef
    5.Lenaerts JTM, van den Broeke MR, van de Berg WJ et al (2012) A new, high-resolution surface mass balance map of Antarctica (1979–2010) based on regional atmospheric climate modeling. Geophys Res Lett 39:L04501CrossRef
    6.van de Berg WJ, van den Broeke MR, van Meijgaard E (2007) Heat budget of the East Antarctic lower atmosphere derived from a regional atmospheric climate model. J Geophys Res 112:D23101CrossRef
    7.Vionnet V, Brun E, Morin S et al (2012) The detailed snowpack scheme Crocus and its implementation in Surfex v7.2. Geosci Model Dev 5:773–791CrossRef
    8.Niu GY, Yang ZL, Mitchell KE et al (2011) The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J Geophys Res 116:D12109CrossRef
    9.Xin YF, Bian LG, Rinke A et al (2013) Simulation and evaluation of 2-m temperature over Antarctica in polar regional climate model. Sci China Earth Sci 57:703–709CrossRef
    10.Lo JC, Yang ZL, Pielke RA (2008) Assessment of three dynamical climate downscaling methods using the Weather Research and Forecasting (WRF) model. J Geophys Res 113:D09112CrossRef
    11.Powers JG, Manning KW, Bromwich DH et al (2012) A decade of Antarctic science support through AMPS. Bull Am Meteorolol Soc 93:1699–1712CrossRef
    12.Bromwich DH, Otieno FO, Hines KM et al (2013) Comprehensive evaluation of Polar Weather Research and Forecasting model performance in the Antarctic. J Geophys Res 118:274–292
    13.Hines KM, Bromwich DH, Bai L et al (2015) Sea ice enhancements to Polar WRF. Mon Weather Rev 143:2363–2385CrossRef
    14.Yao Y, Huang J, Luo Y et al (2015) Improving the WRF model’s simulation over sea ice surface through coupling with a complex thermodynamic sea ice model. Geosci Model Dev Discuss 8:10305–10337CrossRef
    15.Chen BL, Zhang RH, Sun SF et al (2010) A one-dimensional heat transfer model of the Antarctic ice sheet and modeling of snow temperatures at Dome A, the summit of Antarctic Plateau. Sci China Earth Sci 53:763–772CrossRef
    16.Freville H, Brun E, Picard G et al (2014) Using MODIS land surface temperatures and the Crocus snow model to understand the warm bias of ERA-Interim reanalyses at the surface in Antarctica. Cryosphere 8:1361–1373CrossRef
    17.Bromwich DH, Wilson AB, Bai L et al (2015) A comparison of the regional Arctic System Reanalysis and the global ERA-Interim reanalysis for the Arctic. Q J R Meteorol Soc. doi:10.​1002/​qj.​2527
    18.Jordan RE, Andreas EL, Makshtas AP (1999) Heat budget of snow-covered sea ice at North Pole 4. J Geophys Res 104:7785–7806CrossRef
    19.Dery SJ, Yau MK (2001) Simulation of blowing snow in the Canadian Arctic using a double-moment model. Boundary Layer Meteorol 99:297–316CrossRef
    20.Kuipers Munneke P, van den Broeke MR, el Lenaerts JTM et al (2011) A new albedo parameterization for use in climate models over the Antarctic ice sheet. J Geophys Res 116:D05114CrossRef
    21.Andreas EL (1987) A theory for the scalar roughness and the scalar transfer coefficients over snow and sea ice. Boundary Layer Meteorol 38:159–184CrossRef
    22.Bintanja R, van den Broeke MR (1995) Momentum and scalar transfer coefficients over aerodynamically smooth Antarctic surfaces. Boundary Layer Meteorol 74:89–111CrossRef
    23.Holtslag AAM, De Bruin HAR (1988) Applied modeling of the nighttime surface energy balance over land. J Appl Meteorol 27:689–704CrossRef
    24.Martin E, Lejeune Y (1998) Turbulent fluxes above the snow surface. Ann Glaciol 26:179–183
    25.Li ZL, Tang BH, Wu H et al (2013) Satellite-derived land surface temperature: current status and perspectives. Remote Sens Environ 131:14–37CrossRef
    26.Wan ZM (2014) New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product. Remote Sens Environ 140:36–45CrossRef
    27.Teixeira J, Waliser D, Ferraro R et al (2014) Satellite observations for CMIP5: the genesis of obs4mips. Bull Am Meteorol Soc 95:1329–1334CrossRef
    28.Bromwich DH, Monaghan AJ, Manning KW et al (2005) Real-time forecasting for the Antarctic: an evaluation of the Antarctic Mesoscale Prediction System (AMPS). Mon Weather Rev 133:579–603CrossRef
    29.Morrison H, Thompson G, Tatarskii V (2009) Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: comparison of one- and two-moment schemes. Mon Weather Rev 137:991–1007CrossRef
    30.Kain JS (2004) The Kain–Fritsch convective parameterization: an update. J Appl Meteorol 43:170–181CrossRef
    31.Nakanish M (2001) Improvement of the Mellor–Yamada turbulence closure model based on large-eddy simulation data. Boundary Layer Meteorol 99:349–378CrossRef
    32.Iacono MJ, Delamere JS, Mlawer EJ et al (2008) Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models. J Geophys Res 113:D13103CrossRef
    33.Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597CrossRef
    34.Schreier MM, Kahn BH, Suselj K et al (2014) Atmospheric parameters in a subtropical cloud regime transition derived by AIRS and MODIS: observed statistical variability compared to ERA-Interim. Atmos Chem Phys 14:3573–3587CrossRef
    35.Gardner AS, Sharp MJ (2010) A review of snow and ice albedo and the development of a new physically based broadband albedo parameterization. J Geophys Res 115:F01009
    36.Andreas EL (2002) Parameterizing scalar transfer over snow and ice: a review. J Hydrometeorol 3:417–432CrossRef
    37.King JC, Anderson PS (1994) Heat and water vapour fluxes and scalar roughness lengths over an Antarctic ice shelf. Boundary Layer Meteorol 69:101–121CrossRef
    38.Koenigk T, Berg P, Doscher R (2014) Arctic climate change in an ensemble of regional CORDEX simulations. Polar Res 34:24603
    39.Reynolds RW, Rayner NA, Smith TM et al (2002) An improved in situ and satellite SST analysis for climate. J Clim 15:1609–1625CrossRef
    40.Comiso JC, Nishio F (2008) Trends in the sea ice cover using enhanced and compatible AMSR-e, SSM/i, and SMMR data. J Geophys Res 113:C02S07
    41.Wesslen C, Tjernstrom M, Bromwich DH et al (2014) The Arctic summer atmosphere: an evaluation of reanalyses using ASCOS data. Atmos Chem Phys 14:2605–2624CrossRef
    42.van Wessem JM, Reijmer CH, Lenaerts JTM et al (2014) Updated cloud physics in a regional atmospheric climate model improves the modelled surface energy balance of Antarctica. Cryosphere 8:125–135CrossRef
  • 作者单位:Yao Yao (1)
    Jianbin Huang (1)
    Yong Luo (1)
    Zongci Zhao (1)

    1. Ministry of Education Key Laboratory for Earth System Modeling, Center for Earth System Science, and Joint Center for Global Change Studies, Tsinghua University, Beijing, 100084, China
  • 刊物主题:Science, general; Life Sciences, general; Physics, general; Chemistry/Food Science, general; Earth Sciences, general; Engineering, general;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1861-9541
文摘
Regional climate models often lack detailed description of ice sheet surface and, as a result, are limited in their capability to provide useful information for Antarctic climate research and field campaigns. In this study, an upgraded scheme of surface physics for Antarctic ice sheet (IST) is developed to improve the surface temperature simulations in Antarctica. Through stand-alone simulations, IST shows advantages over the Noah glacial module, a commonly utilized scheme in the widely used Weather Research and Forecasting (WRF) model. These improvements are mainly attributed to the incorporation of detailed snow physics and optimized surface layer parameterization, which results in better simulations of both the surface albedo in summer and the turbulent sensible heat flux in winter. When coupled with IST instead of Noah, WRF models show improved simulation of surface temperatures throughout the year. The bias and root-mean-square-error of annual mean surface temperatures are reduced from 5.7 and 6.0 to 0.2 and 2.7 K.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700