用户名: 密码: 验证码:
Recognition of MCF-7 human breast carcinoma cells using silica-encapsulated fluorescent nanoparticles modified with aminophenylboronic acid
详细信息    查看全文
  • 作者:Linjing Wu ; Yaqian Yan ; Peiyi Gao ; Shasheng Huang
  • 关键词:Sialic acid ; Imaging ; Breast cancer ; Bioconjugation ; MTT assay
  • 刊名:Microchimica Acta
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:183
  • 期:3
  • 页码:1115-1122
  • 全文大小:2,373 KB
  • 参考文献:1.Brown JM, Attardi LD (2005) The role of apoptosis in cancer development and treatment response. Nat Rev Cancer 5:231–237
    2.Riehemann K, Schneider SW, Luger TA, Godin B, Ferrari M, Fuchs H (2009) Nanomedicine—challenge and perspectives. Angew Chem Int Ed 48:872–897CrossRef
    3.Demchenko AP (2013) Nanoparticles and nanocomposites for fluorescence sensing and imaging. Methods Appl Fluoresc 1:22001CrossRef
    4.Zhang CY, Johnson LW (2006) Quantum-dot-based nanosensor for RRE IIB RNA-Rev peptide interaction assay. J Am Chem Soc 128:5324CrossRef
    5.Pedram P, Mahani M, Torkzadeh-Mahani M, Hasani Z, Ju H (2015) Cadmium sulfide quantum dots modified with the human transferrin protein siderophiline for targeted imaging of breast cancer cells. Microchimica Acta online: 13 August 2015
    6.Tan L, Chen K, Huang C, Peng R, Luo X, Yang R, Cheng Y, Tang Y (2015) A fluorescent turn-on detection scheme for α-fetoprotein using quantum dots placed in a boronate-modified molecularly imprinted polymer with high affinity for glycoproteins. Microchim Acta 182:2615CrossRef
    7.Nakamura M, Shono M, Ishimura K (2007) Synthesis, characterization, and biological applications of multifluorescent silica nanoparticles. Anal Chem 79:6507CrossRef
    8.Kneipp J, Kneipp H, Rice WL, Kneipp K (2005) Optical probes for biological applications based on surface-enhanced Raman scattering from indocyanine green on gold nanoparticles. Anal Chem 77:2381CrossRef
    9.Lee S, Kim S, Choo J, Shin SY, Lee YH, Choi HY, Ha S, Kang K, Oh CH (2009) Biological imaging of HEK293 cells expressing PLCγ1 using surface-enhanced Raman microscopy. Anal Chem 79:916CrossRef
    10.Guo Q, Li X, Shen C, Zhang S, Qi H, Li T, Yang M (2015) Electrochemical immunoassay for the protein biomarker mucin 1 and for MCF-7 cancer cells based on signal enhancement by silver nanoclusters. Microchim Acta 182:7CrossRef
    11.Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547CrossRef
    12.Ruan G, Agrawal A, Marcus AI, Nie S (2007) Imaging and tracking of tat peptide-conjugated quantum dots in living cells: new insights into nanoparticle uptake, intracellular transport, and vesicle shedding. J Am Chem Soc 129:14759CrossRef
    13.Courty S, Luccardini C, Bellaiche Y, Cappello G, Dahan M (2006) Tracking individual kinesin motors in living cells using single quantum-dot imaging. Nano Lett 6:1491CrossRef
    14.Jaworska A, Wojcik T, Malek K, Kwolek U, Kepczynski M, Ansary AA, Chlopicki S, Baranska M (2014) Rhodamine 6G conjugated to gold nanoparticles as labels for both SERS and fluorescence studies on live endothelial cells. Microchim Acta 182:119CrossRef
    15.Kneipp K, Kneipp H, Kneipp J (2006) Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates from single-molecule Raman spectroscopy to ultrasensitive probing in live cell. Acc Chem Res 39:443CrossRef
    16.Lee S, Chon H, Lee M, Choo J, Shin SY, Lee YH, Rhyu IJ, Son SW, Oh CH (2009) Surface-enhanced Raman scattering imaging of HER2 cancer markers overexpressed in single MCF-7 cells using antibody conjugated hollow gold nanospheres. Biosens Bioelectron 24:2260CrossRef
    17.Woo MA, Lee SM, Kim G, Baek J, Noh MS, Kim JE, Park SJ, Minai-Tehrani A, Park SC, Seo YT, Kim YK, Lee YS, Jeong DH, Cho MH (2009) Multiplex immunoassay using fluorescent-surface enhanced Raman spectroscopic dots for the detection of bronchioalveolar stem cells in murine lung. Anal Chem 81:1008CrossRef
    18.Kitano H, Anraku Y, Shinohara H (2006) Sensing capabilities of colloidal gold monolayer modified with a phenylboronic acid-carrying polymer brush. Biomacromolecules 7:1065CrossRef
    19.Ivanov AE, Galaev IY, Mattiasson B (2006) Interaction of sugars, polysaccharides and cells with boronate-containing copolymers: from solution to polymer brushes. J Mol Recognit 19:322CrossRef
    20.Otsuka H, Uchimura E, Koshino H, Okano T, Kataoka K (2003) Anomalous binding profile of phenylboronic acid with N-acetylneuraminic acid (Ner5Ac) in aqueous solution with varying pH. J Am Chem Soc 125:3493CrossRef
    21.Djanashvili K, Frullano L, Peters JA (2005) Molecular recognition of sialic acid end groups by phenylboronates. Chem Eur J 11:4010CrossRef
    22.Mader HS, Wolfbeis OS (2008) Boronic acid based probes for microdetermination of saccharides and glycosylated biomolecules. Microchim Acta 162:1–34CrossRef
    23.Wolfbeis OS (2015) An overview of nanoparticles commonly used in fluorescent bioimaging. Chem Soc Rev 44(14):4743–4768CrossRef
    24.Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature Phys Sci 241:20CrossRef
    25.Brewer SH, Allen AM, Lappi SE, Chasse TL, Briggman KA, Gorman CB, Franzen S (2004) Infrared detection of a phenylboronic acid terminated alkane thiol monolayer on gold surfaces. Langmuir 20:5512CrossRef
    26.Smith BC (Ed.) (1999) Infrared spectral interpretation: a systematic approach. CRC Press, New York
    27.Lee S, Chon H, Yoon S-Y, Lee EK, Chang S-I, Lim DW, Choo J (2011) Fabrication of SERS-fluorescence dual modal nanoprobes and application to multiplex cancer cell imaging. Nanoscale 10:1039
    28.Sapsford KE, Berti L, Medintz IL (2006) Materials for fluorescence resonance energy transfer analysis: beyond traditional donor–acceptor combinations. Angew Chem Int Ed 45:4562CrossRef
    29.Matsumoto A, Cabral H, Sato N, Kataoka K, Miyahara Y (2010) Assessment of tumor metastasis by the direct determination of cell-membrane sialic acid expression. Angew Chem Int Ed 49:5494CrossRef
    30.Tarnuzzer RW, Colon PS, Seal S (2005) Vacancy engineered ceria nanostructures for protection from radiation-induced cellular damage. Nano Lett 5:2573CrossRef
    31.Lin F, Lu QX, Lu L, Liang Y (2007) Inhibitory effect of extracts of digestive gland on proliferation of tumor cells. Carcinog Teratog Mutagen 19:116–118
    32.Wei G, Yan M, Ma L, Zhang H (2012) The synthesis of highly water-dispersible and targeted CdS quantum dots and it is used for bioimaging by confocal micr- oscopy. Spectrochim Acta A 85(1):288–292CrossRef
    33.Gao X, Cui Y, Levenson RM, Chung LW, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22(8):969–976CrossRef
    34.Li JL, Wang L, Liu XY, Zhang ZP, Guo HC, Liu WM, Tang SH (2009) In vitro cancer cell imaging and therapy using transferrin-conjugated gold nanoparticles. Cancer Lett 274(2):319–326CrossRef
  • 作者单位:Linjing Wu (1)
    Yaqian Yan (1)
    Peiyi Gao (1)
    Shasheng Huang (1)

    1. Life and Environmental Science College, Shanghai Normal University, Shanghai, 200234, People’s Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Analytical Chemistry
    Inorganic Chemistry
    Physical Chemistry
    Characterization and Evaluation Materials
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
  • 出版者:Springer Wien
  • ISSN:1436-5073
文摘
A method is reported for recognizing MCF-7 human breast carcinoma cells based on silica-encapsulated nanoparticles modified with aminophenylboronic acid which can recognize sialic acid on cell surfaces. Gold@rhodamine B nanoparticles were coated with aminophenylboronic acid and used to capture MCF-7 cells. It is found that the presence of gold NPs was favorable to prepare nanoparticles easily and that they were extraordinarily biocompatible with MCF-7 cells. The experimental results confirmed that the nanoparticles can be used to target breast carcinoma cells using HS 578Bst normal breast cells as the negative control. The MCF-7 cells were imaged by laser scanning microscopy and showed strong red fluorescence in dark field. An MTT test revealed an 82 % viability of cells when 50 mg · mL−1 fluorescent probe was used in the incubation experiments. The results exhibited that the NPs are innocuous and stable. In our perception, the method has a larege potential for early diagnosis of breast cancer due to high affinity between nanoparticles and the breast carcinoma cells.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700