用户名: 密码: 验证码:
Biorthogonal Multiwavelets with Sampling Property and Application in Image Compression
详细信息    查看全文
  • 作者:Baobin Li ; Lizhong Peng
  • 关键词:Multiwavelet ; Biorthogonal multiwavelet ; Analysis ; ready multiwavelet ; Transferring armlet order ; 42C40a ; 65T60 ; 15A23 ; 94A08
  • 刊名:Circuits, Systems, and Signal Processing
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:35
  • 期:3
  • 页码:933-951
  • 全文大小:1,326 KB
  • 参考文献:1.A. Aldroubi, M. Unser, Families of wavelet transforms in connection with Shannon’s sampling theory and the Gabor transform, in Wavelets: A Tutorial in Theory and Applications, ed. by C.K. Chui (Academic, New York, 1992), pp. 509–528CrossRef
    2.A. Aldroubi, M. Unser, Sampling procedures in function spaces and asymptotic equivalence with Shannon’s sampling theory. Numer. Funct. Anal. Optim. 15(1–2), 1–21 (1994)CrossRef MathSciNet MATH
    3.H. Bray, K. McCormick, R.O. Wells, X. Zhou, Wavelet variations on the Shannon sampling theorem. Curr. Mod. Biol. 34(1–3), 249–257 (1995)
    4.C.K. Chui, J. Lian, A study of orthonormal multiwavelets. J. Appl. Numer. Math. 20(3), 273–298 (1996)CrossRef MathSciNet MATH
    5.I. Daubechies, Ten Lectures on Wavelets (SIAM, Philadelphia, 1992)CrossRef MATH
    6.J. Geronimo, D. Hardin, P. Massoputs, Fractal functions and wavelet expansions based on several scaling functions. J. Approx. Theory 78(3), 373–401 (1994)CrossRef MathSciNet MATH
    7.T.N.T. Goodman, C.A. Micchelli, Orthonormal Cardinal Functions, in Wavelets: Theory, Algorithms, and Applications (Academic, San Diego, CA, 1994)
    8.Q.T. Jiang, On the design of multifilter banks and orthonormal multiwavelet bases. IEEE Trans. Signal Process. 46(12), 3292–3303 (1998)CrossRef
    9.Q.T. Jiang, Parametrization of M-channel orthogonal multifilter banks. Adv. Comput. Math. 12(2–3), 189–211 (2000)CrossRef MathSciNet MATH
    10.Q.T. Jiang, Orthogonal and biorthogonal square-root(3)-refinement wavelets for hexagonal data processing. IEEE Trans. Signal Process. 57(11), 4313–14304 (2009)
    11.Q.T. Jiang, Biorthogonal wavelets with 4-fold axial symmetry for quadrilateral surface multiresolution processing. Adv. Comput. Math. 34(2), 127–165 (2011)CrossRef MathSciNet MATH
    12.J. Lebrun, M. vetterli, Balanced multiwavelets, IEEE international conference on acoustics, speech and signal processing, vol. 3 (1997), pp. 2473–2476
    13.J. Lebrun, M. Vetterli, High-order balanced multiwavelets: theory, factorization and design. IEEE Trans. Signal Process. 49(9), 1918–1930 (2001)CrossRef MathSciNet
    14.J.-A. Lian, C.K. Chui, Analysis-ready multiwavelets (armlets) for processing scalar-valued signals. IEEE Signal Process. Lett. 11(2), 205–208 (2004)CrossRef
    15.B.B. Li, L.Z. Peng, Parametrization for balanced multifilter banks. Int. J. Wavelets Multiresolut. Inf. Process. 6(4), 617–629 (2008)CrossRef MathSciNet MATH
    16.B.B. Li, L.Z. Peng, Balanced multiwavelets with interpolatory property. IEEE Trans. Image Process. 20(5), 1450–1457 (2011)CrossRef MathSciNet
    17.B.B. Li, L.Z. Peng, Balanced multifilter banks for multiple description coding. IEEE Trans. Image Process. 20(3), 866–872 (2011)CrossRef MathSciNet
    18.B.B. Li, L.Z. Peng, Balanced interpolatory multiwavelets with multiplicity \(r\) . Int. J. Wavelets Multiresolut. Inf. Process. 10(4), 1250039 (2012)CrossRef MathSciNet
    19.L. Liu, H. Zhang, Application on Image fusion based on balanced multi-wavelet, 2010 International Symposium on Intelligence Information Processing and Trusted Computing, 512–515 (2010)
    20.W. Liu, Z. Ma, X. Tan, Multiple-description video coding based on balanced multiwavelet image transformation. Internet Imaging VI SPIE 5670, 280–291 (2005)CrossRef
    21.Walid A. Mahmoud, Majed E. Alneby, Wael H. Zayer, 2D-multiwavelet transform 2D-two activation function wavelet network based face recognition. J. Appl. Sci. Res. 6(8), 1019–1028 (2010)
    22.M.B. Martin, A.E. Bell, New image compression techniques using multiwavelets and multiwavelet packets. IEEE Trans. Image Process. 10(4), 500–510 (2001)CrossRef MATH
    23.G. Plonka, V. Strela, Construction of multiscaling function’s with approximation and symmetry. SIAM J. Math. Anal. 29(2), 481–510 (1998)CrossRef MathSciNet MATH
    24.N. Saito, G. Beylkin, Multiresolution representations using the autocorrelation functions of compactly supported wavelets IEEE trans. Signal Process. 41(12), 3584–3590 (1993)MATH
    25.I.W. Selesnick, Interpolating multiwavelet bases and the sampling theorem. IEEE Trans. Signal Process. 47(6), 1615–1621 (1999)CrossRef MathSciNet MATH
    26.L. Shen, H.H. Tan, J.Y. Tham, Symmetric–antisymmetric orthonormal multiwavelets and related scalar wavelets. Appl. Comput. Harmon. Anal. 8(3), 258–279 (2000)CrossRef MathSciNet MATH
    27.L. Shen, H.H. Tan, On a family of orthonormal scalar wavelets and related balanced multiwavelets. IEEE Trans. Signal Process. 49(7), 1447–1453 (2001)CrossRef MathSciNet
    28.G. Strang, T. Nguyen, Wavelets and Filter Banks (Wellesley-Cambridge, Wellesley, 1996)MATH
    29.V. Strela, P. Heller, G. Strang, P. Topiwala, C. Heil, The application of multiwavelet filter banks to image processing. IEEE Trans. Image Process. 8(4), 548–563 (1999)CrossRef
    30.P.P. Vaidyanathan, Multirate Systems and Filter Banks, Englewood Cliffs (Prentice Hall, NJ, 1993)
    31.Z. Wang, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli, Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)CrossRef
    32.C. Weidmann, J. Lebrun, M. Vetterli, Significance tree image coding using balanced multiwavelets. Proc. ICIP, Chicago, IL, Oct. 1, 97–101 (1998)
    33.X.-G. Xia, B.W. Suter, Vector-valued wavelets and vector filter banks. IEEE Trans. Signal Process. 44(3), 508–518 (1996)CrossRef
    34.X.-G. Xia, Z. Zhang, On sampling theorem, wavelets, and wavelet transforms. IEEE Trans. Signal Process. 41(12), 2535–3524 (1993)
    35.J.-K. Zhang, T.N. Davidson, Z.-Q. Luo, K.M. Wong, Design of interpolating biorthogonal multiwavelet systems with compact support. Appl Comput Harmon Anal 11(3), 420–438 (2001)CrossRef MathSciNet MATH
    36.D.-X. Zhou, Interpolatory orthogonal multiwavelets and refinable functions. IEEE Trans. Signal Process. 50(3), 520–527 (2002)CrossRef MathSciNet
  • 作者单位:Baobin Li (1)
    Lizhong Peng (2)

    1. School of Computer and Control, University of Chinese Academy of Sciences, Beijing, 100190, People’s Republic of China
    2. School of Mathematical Sciences, Peking University, Beijing, 100871, People’s Republic of China
  • 刊物类别:Engineering
  • 刊物主题:Electronic and Computer Engineering
  • 出版者:Birkh盲user Boston
  • ISSN:1531-5878
文摘
This paper discusses biorthogonal multiwavelets with sampling property. In such systems, vector-valued refinable functions act as the sinc function in the Shannon sampling theorem, and their corresponding matrix-valued masks possess a special structure. In particular, for the multiplicity \(r=2\), a biorthogonal multifilter bank can be reduced to two scalar-valued filters. Moreover, if the vector-valued scaling functions are interpolating, three different concepts: balancing order, approximation order and analysis-ready order, will be shown to be equivalent. Based on this result, we introduce the transferring armlet order for constructing biorthogonal balanced multiwavelets with sampling property. Also, some balanced biorthogonal multiwavelets will be obtained. Finally, application of biorthogonal interpolating multiwavelets in image compression is discussed. Experiments show that for the same length, the biorthogonal multifilter bank is superior to the orthogonal case. Moreover, certain biorthogonal interpolating multiwavelets are also better than the classical Daubechies wavelets. Keywords Multiwavelet Biorthogonal multiwavelet Analysis-ready multiwavelet Transferring armlet order

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700