用户名: 密码: 验证码:
Three-Phase Oil Relative Permeability in Water-Wet Media: A Comprehensive Study
详细信息    查看全文
  • 作者:Amir Kianinejad ; David A. DiCarlo
  • 关键词:Three ; phase ; Relative permeability ; Saturation path ; Unsteady ; state ; Hysteresis
  • 刊名:Transport in Porous Media
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:112
  • 期:3
  • 页码:665-687
  • 全文大小:1,183 KB
  • 参考文献:Alizadeh, A.H., Piri, M.: The effect of saturation history on three-phase relative permeability: an experimental study. Water Resour. Res. 50(2), 1636–1664 (2014a). doi:10.​1002/​2013WR014914 CrossRef
    Alizadeh, A.H., Piri, M.: Three-phase flow in porous media: a review of experimental studies on relative permeability. Rev. Geophys. 52(3), 468–521 (2014b). doi:10.​1002/​2013RG000433 CrossRef
    Aziz, K., Settari, A.: Petroleum Reservoir Simulation. Chapman and Hall, London (1979)
    Baker, L. E.: Three-Phase Relative Permeability Correlations. In SPE Enhanced Oil Recovery Symposium, Vol. SPE-17369-MS, (1988)
    Blunt, M. J., Fenwick, D. H., Zhou, D.: What Determines Residual Oil Saturation in Three-Phase Flow? In SPE-27816-MS (1994). doi:10.​2118/​27816-MS
    Blunt, M.J.: An empirical model for three-phase relative permeability. SPE J. 5(04), 435–445 (2000)CrossRef
    Brooks, R.H., Corey, A.T.: Hydraulic Properties of Porous Media. Colorado State University, Hydrology Papers (1964)
    Chaudhary, K., Cardenas, M.B., Wolfe, W.W., Maisano, J.A., Ketcham, R.A., Bennett, P.C.: Pore-scale trapping of supercritical CO2 and the role of grain wettability and shape. Geophys. Res. Lett. 40(15), 3878–3882 (2013). doi:10.​1002/​grl.​50658 CrossRef
    Dehghanpour, H.: Measurement and modeling of three-phase oil relative permeability. PhD Dissertation. The University of Texas at Austin (2011)
    Dehghanpour, H., DiCarlo, D.: A comparative study of transient and steady-state three-phase oil permeability. J. Can. Pet. Technol. 52(1), 54–63 (2013a)CrossRef
    Dehghanpour, H., DiCarlo, D.A.: Drainage of capillary-trapped oil by an immiscible gas: impact of transient and steady-state water displacement on three-phase oil permeability. Trans. Porous Media 100(2), 297–319 (2013b). doi:10.​1007/​s11242-013-0217-z
    Dehghanpour, H., DiCarlo, D.A., Aminzadeh, B., Mirzaei Galeh-Kalaei, M.: Two-Phase and Three-Phase Saturation Routes and Relative Permeability During Fast Drainage. In SPE-129962-MS, (2010). doi:10.​2118/​129962-MS
    Dehghanpour, H., Aminzadeh, B., Mirzaei, M., DiCarlo, D.A.: Flow coupling during three-phase gravity drainage. Phys. Rev. E 83(6), 065302 (2011)CrossRef
    Delshad, M., Delshad, M., Pope, G. A., Lake, L. W.: Two- and Three-Phase Relative Permeabilities of Micellar Fluids. SPE-13581-PA, (1987). doi:10.​2118/​13581-PA
    Delshad, M., Pope, G.A.: Comparison of the three-phase oil relative permeability models. Transp. Porous Media 4(1), 59–83 (1989)CrossRef
    DiCarlo, D.A., Sahni, A., Blunt, M.J.: Three-phase relative permeability of water-wet oil-wet and mixed-wet sandpacks. SPE J. 5(01), 82–91 (2000a)CrossRef
    DiCarlo, D.A., Sahni, A., Blunt, M.J.: The effect of wettability on three-phase relative permeability. Transp. Porous Media 39(3), 347–366 (2000b)CrossRef
    Dria, D. E., Pope, G. A., Sepehrnoori, K.: Three-Phase Gas/Oil/Brine Relative Permeabilities Measured Under CO2 Flooding Conditions. SPE-20184-PA, (1993). doi:10.​2118/​20184-PA
    Eleri, O.O., Graue, A., Skauge, A., Larsen, J.A.: Calculation of three-Phase Relative Permeabilities from Displacement Experiments with Measurements of In-Situ Saturation. In Soc. Core Anal. Int. Symp, San Francisco (1995b)
    Eleri, O. O., Graue, A., Skauge, A.: Steady-State and Unsteady-State Two-Phase Relative Permeability Hysteresis and Measurements of Three-Phase Relative Permeabilities Using Imaging Techniques. In SPE-30764-MS, (1995a)
    Fayers, F. J.: Extension of Stone’s Method 1 and Conditions for Real Characteristics in Three-Phase Flow. SPE-16965-PA, (1989). doi:10.​2118/​16965-PA
    Fayers, F.J., Matthews, J.D.: Evaluation of normalized stone’s methods for estimating three-phase relative permeabilities. SPE J. 24(02), 224–232 (1984)CrossRef
    Fenwick, D. H., Blunt, M. J.: Network Modeling of Three-Phase Flow in Porous Media. SPE-38881-PA, (1998). doi:10.​2118/​38881-PA
    Grader, A. S., O’Meara Jr, D. J.: Dynamic Displacement Measurements of Three-Phase Relative Permeabilities Using Three Immiscible Liquids. In SPE-18293-MS, (1988)
    Hosain, A.: Three-Phase Relative Permeability Measurements. Master’s Thesis, University of Birmingham, UK, (1961)
    Hustad, O. S., Holt, T.: Gravity Stable Displacement of Oil By Hydrocarbon Gas After Waterflooding. In SPE-24116-MS, (1992). doi:10.​2118/​24116-MS
    Jerauld, G.R.: General three-phase relative permeability model for Prudhoe Bay. SPE Reserv. Eng. 12(4), 255–263 (1997)CrossRef
    Johnson, E. F., Bossler, D. P., Naumann, V. O.: Calculation of Relative Permeability from Displacement Experiments. Petroleum Transactions, AIME, SPE-1023-G 216, 370–72 (1959)
    Juanes, R., Patzek, T. W.: Relative Permeabilities in Co-Current Three-Phase Displacements with Gravity. In SPE-83445-MS, (2003). doi:10.​2118/​83445-MS
    Juanes, R., Patzek, T. W.: Three-Phase Displacement Theory: An Improved Description of Relative Permeabilities. In SPE-77539-MS, (2002). doi:10.​2118/​77539-MS
    Juanes, R., Spiteri, E.J., Orr, F.M., Blunt, M.J.: Impact of relative permeability hysteresis on geological CO2 storage. Water Resour. Res. 42(12), W12418 (2006). doi:10.​1029/​2005WR004806 CrossRef
    Juanes, R., Patzek, T.W.: Relative permeabilities for strictly hyperbolic models of three-phase flow in porous media. Transp. Porous Media 57(2), 125–152 (2004). doi:10.​1023/​B:​TIPM.​0000038251.​10002.​5e CrossRef
    Kianinejad, A., Aminzadeh, B., Chen, X., DiCarlo, D. A.: Three-Phase Relative Permeabilities as a Function of Flow History. In SPE-169083-MS. SPE Improved Oil Recovery Symposium, 12–16 April, Tulsa, Oklahoma, USA, (2014). doi:10.​2118/​169083-MS
    Kianinejad, A., Chen, X., DiCarlo, D.A.: The effect of saturation path on three-phase relative permeability. Water Resour. Res. (2015a). doi:10.​1002/​2015WR017185
    Kianinejad, A., Chen, X., DiCarlo, D. A.: Three-Phase Relative Permeability in Consolidated Media. In SPE-175129-MS. Houston, Texas, (2015b). doi:10.​2118/​175129-MS
    Lake, L. W.: Enhanced Oil Recovery. Society of Petroleum Engineers (1989)
    Larsen, J. A., Skauge, A.: Methodology for Numerical Simulation With Cycle-Dependent Relative Permeabilities. SPE-38456-PA, (1998). doi:10.​2118/​38456-PA
    Mavaddat, M., Riahi, S.: A molecular structure based model for predicting optimal salinity of anionic surfactants. Fluid Phase Equilib. 409, 354–360 (2016). doi:10.​1016/​j.​fluid.​2015.​10.​010 CrossRef
    Mohsenzadeh, A., Nabipour, M., Asadizadeh, S., Nekouie, M., Ameri, A., Ayatollahi, S.: Experimental investigation of different steam injection scenarios during SAGD process. Spec. Top. Rev. Porous Media: An Int. J. 2(4), 283–291 (2011). doi:10.​1615/​SpecialTopicsRev​PorousMedia.​v2.​i4.​30 CrossRef
    Muqeem, M. A., Bentsen, R. G., Maini, B. B.: An Improved Steady-State Technique for Three-Phase Relative Permeability Measurements. In PETSOC-93-03, (1993). doi:10.​2118/​93-03
    Naylor, P., Sargent, N.C., Crosbie, A.J., Tilsed, A.P., Goodyear, S.G.: Gravity drainage during gas injection. Pet. Geosci. 2(1), 69–74 (1996)CrossRef
    Oak, M. J., Baker, L. E., Thomas, D. C.: Three-Phase Relative Permeability of Berea Sandstone. SPE-17370-PA, (1990). doi:10.​2118/​17370-PA
    Oak, M. J.: Three-Phase Relative Permeability of Intermediate-Wet Berea Sandstone. In SPE-22599-MS, (1991)
    Oak, M. J.: Three-phase relative permeability of water-Wet Berea. In SPE-20183-MS, (1990)
    Oren, P. E., Billiotte, J., Pinczewski, W. V.: Mobilization of Waterflood Residual Oil by Gas Injection for Water-Wet Conditions. SPE-20185-PA, (1992). doi:10.​2118/​20185-PA
    Pejic, D., Maini, B. B.: Three-Phase Relative Permeability of Petroleum Reservoirs. In SPE-81021-MS, (2003). doi:10.​2118/​81021-MS
    Pini, R., Krevor, S.C.M., Benson, S.M.: Capillary pressure and heterogeneity for the CO2/water system in sandstone rocks at reservoir conditions. Adv. Water Resour. 38, 48–59 (2012). doi:10.​1016/​j.​advwatres.​2011.​12.​007 CrossRef
    Piri, M., Blunt, M.J.: Three-dimensional mixed-wet random pore-scale network modeling of two-and three-phase flow in porous media II. Results. Phys. Rev. E 71(2), 026302 (2005a)CrossRef
    Piri, M., Blunt, M.J.: Three-dimensional mixed-wet random pore-scale network modeling of two-and three-phase flow in porous media I. Model description. Phys. Rev. E 71(2), 026301 (2005b)CrossRef
    Pope, G. A., Wu, W., Narayanaswamy, G., Delshad, M., Sharma, M., Wang, P.: Modeling relative permeability effects in gas-condensate reservoirs. In SPE-49266-MS, (1998). doi:10.​2118/​49266-MS
    Sahni, A., Burger, J., Blunt, M. J.: Measurement of Three Phase Relative Permeability during Gravity Drainage Using CT. In SPE-39655-MS, (1998)
    Saraf, D. N., Batycky, J. P., Jackson, C. H., Fisher, D. B.: An Experimental Investigation of Three-Phase Flow of Water-Oil-Gas Mixtures through Water-Wet Sandstones. In SPE-10761-MS, (1982)
    Sarem, A.M.: Three-phase relative permeability measurements by unsteady-state method. SPE J. 6(03), 199–205 (1966)CrossRef
    Shahverdi, H., Sohrabi, M.: An Improved Three-Phase Relative Permeability and Hysteresis Model for the Simulation of a Water-Alternating-Gas Injection. SPE-152218-PA, (2013). doi:10.​2118/​152218-PA
    Spiteri, E. J., Juanes, R., Blunt, M. J., Orr, F. M.: A New Model of Trapping and Relative Permeability Hysteresis for All Wettability Characteristics. SPE-96448-PA, (2008). doi:10.​2118/​96448-PA
    Stone, H. L.: Probability model for estimating three-phase relative permeability. SPE-2116-PA, (1970). doi:10.​2118/​2116-PA
    Zhang, J., Nguyen, Q. P., Flaaten, A., Pope, G. A.: Mechanisms of enhanced natural imbibition with novel chemicals. SPE-113453-PA, (2009). doi:10.​2118/​113453-PA
    Zhou, D., Blunt, M.: Effect of spreading coefficient on the distribution of light non-aqueous phase liquid in the subsurface. J. Contam. Hydrol. 25(1), 1–19 (1997). doi:10.​1016/​S0169-7722(96)00025-3 CrossRef
  • 作者单位:Amir Kianinejad (1)
    David A. DiCarlo (1)

    1. Department of Petroleum and Geosystems Engineering, The University of Texas at Austin, Austin, TX, USA
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geotechnical Engineering
    Industrial Chemistry and Chemical Engineering
    Civil Engineering
    Hydrogeology
    Mechanics, Fluids and Thermodynamics
  • 出版者:Springer Netherlands
  • ISSN:1573-1634
文摘
We report experimental three-phase oil relative permeability in two water-wet media (a sandpack and a Berea sandstone core) along different saturation paths. Three oils with different viscosities, compositions, and spreading coefficients were used in the measurements. The data show that oil relative permeability can vary significantly along different saturation paths. Most importantly, we find that despite the significant (orders of magnitude) variation of oil relative permeability along different saturation paths, the oil relative permeability in each medium can be collapsed into a single relative permeability curve, once they are plotted as a function of mobile oil saturation. However, this collapsed curve varies depending on the porous media. We show that the same behavior occurs in the relative permeability data published over the past 50 years. These observations indicate that the key factor in differences between oil permeabilities in the same porous media is changes in the residual oil saturation. We examine the performance of most commonly used relative permeability models, i.e., Corey, Saturation-Weighted Interpolation (SWI), and Stone against our data. Given the importance of residual oil saturation, we fit the experimental data along different saturation paths by treating the residual oil saturation in these models as the fitting parameter while keeping the other parameters constant. We find that the Corey and SWI models fit the data very well while the Stone model performs poorly at low saturations. We find that residual oil saturation is a nonlinear function of gas/water saturation as opposed to linear relationship previously suggested by others.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700