用户名: 密码: 验证码:
Synthesis, Characterization and Applications of a Perdeuterated Amphipol
详细信息    查看全文
  • 作者:Fabrice Giusti ; Jutta Rieger ; Laurent J. Catoire…
  • 关键词:Amphipol ; A8 ; 35 ; Deuteration ; Mass spectrometry ; NMR
  • 刊名:Journal of Membrane Biology
  • 出版年:2014
  • 出版时间:October 2014
  • 年:2014
  • 卷:247
  • 期:9-10
  • 页码:909-924
  • 全文大小:1,481 KB
  • 参考文献:1. Banères J-L, Popot J-L, Mouillac B (2011) New advances in production and functional folding of G protein-coupled receptors. Trends Biotechnol 29:314-22 CrossRef
    2. Bazzacco P, Billon-Denis E, Sharma KS, Catoire LJ, Mary S, Le Bon C, Point E, Banères J-L, Durand G, Zito F, Pucci B, Popot J-L (2012) Non-ionic homopolymeric amphipols: application to membrane protein folding, cell-free synthesis, and solution NMR. Biochemistry 51:1416-430 CrossRef
    3. Berry KD, Bailey KM, Beal J, Diawara Y, Funk L, Steve Hicks J, Jones AB, Littrell KC, Pingali SV, Summers PR, Urban VS, Vandergriff DH, Johnson NH, Bradley BJ (2012) Characterization of the neutron detector upgrade to the GP-SANS and Bio-SANS instruments at HFIR. Nucl Instr Meth Phys Res A 693:179-85 CrossRef
    4. Catoire LJ, Zoonens M, van Heijenoort C, Giusti F, Popot J-L, Guittet E (2009) Inter- and intramolecular contacts in a membrane protein/surfactant complex observed by heteronuclear dipole-to-dipole cross-relaxation. J Magn Res 197:91-5 CrossRef
    5. Catoire LJ, Damian M, Giusti F, Martin A, van Heijenoort C, Popot J-L, Guittet E, Banères J-L (2010a) Structure of a GPCR ligand in its receptor-bound state: leukotriene B4 adopts a highly constrained conformation when associated to human BLT2. J Am Chem Soc 132:9049-057 CrossRef
    6. Catoire LJ, Zoonens M, van Heijenoort C, Giusti F, Guittet E, Popot J-L (2010b) Solution NMR mapping of water-accessible residues in the transmembrane / β-barrel of OmpX. Eur Biophys J 39:623-30 CrossRef
    7. Catoire LJ, Damian M, Baaden M, Guittet E, Banères J-L (2011) Electrostatically-driven fast association and perdeuteration allow detection of transferred cross-relaxation for G protein-coupled receptor ligands with equilibrium dissociation constants in the high-to-low nanomolar range. J Biomol NMR 50:191-95 CrossRef
    8. Catoire LJ, Warnet XL, Warschawski DE (2014) Micelles, bicelles, amphipols, nanodiscs, liposomes or intact cells: The hitch-hiker guide to membrane protein study by NMR. In: Mus-Veteau I (ed) Membrane protein production for structural analysis. Springer, Berlin (in press)
    9. Charvolin D, Perez J-B, Rouvière F, Giusti F, Bazzacco P, Abdine A, Rappaport F, Martinez KL, Popot J-L (2009) The use of amphipols as universal molecular adapters to immobilize membrane proteins onto solid supports. Proc Natl Acad Sci USA 106:405-10 CrossRef
    10. Couvreur L, Lefay C, Belleney J, Charleux B, Guerret O, Magnet S (2003) First nitroxide-mediated controlled free-radical polymerization of acrylic acid. Macromolecules 36:8260-267 CrossRef
    11. Czerski L, Sanders CR (2000) Functionality of a membrane protein in bicelles. Anal Biochem 284:327-33 CrossRef
    12. Dahmane T, Damian M, Mary S, Popot J-L, Banères J-L (2009) Amphipol-assisted in vitro folding of G protein-coupled receptors. Biochemistry 48:6516-521 CrossRef
    13. Dahmane T, Giusti F, Catoire LJ, Popot J-L (2011) Sulfonated amphipols: synthesis, properties and applications. Biopolymers 95:811-23 CrossRef
    14. Diab C, Tribet C, Gohon Y, Popot J-L, Winnik FM (2007a) Complexation of integral membrane proteins by phosphorylcholine-based amphipols. Biochim Biophys Acta 1768:2737-747 CrossRef
    15. Diab C, Winnik FM, Tribet C (2007b) Enthalpy of interaction and binding isotherms of non-ionic surfactants onto micellar amphiphilic polymers (amphipols). Langmuir 23:3025-035 CrossRef
    16. Elter, S, Raschle, T, Arens, S, Gelev, V, Etzkorn, M, Wagner, G (2014). The use of amphipols for NMR structural characterization of 7-TM proteins (submitted for publication)
    17. Etzkorn M, Raschle T, Hagn F, Gelev V, Rice AJ, Walz T, Wagner G (2013) Cell-free expressed bacteriorhodopsin in different soluble membrane mimetics: biophysical properties and NMR accessibility. Structure?21:394-01 CrossRef
    18. Etzkorn, M, Zoonens, M, Catoire, LJ, Popot, J-L, Hiller, S (2014). How amphipols embed membrane proteins: Global solvent accessibility and interaction with a flexible protein terminus. J Membr Biol (in press)
    19. Fernandez, A, Le Bon, C, Baumlin, N, Giusti, F, Crémel, G, Popot, J-L, Bagnard, D (2014) In vivo characterization of the biodistribution profile of amphipols (submitted for publication)
    20. Giusti F, Popot J-L, Tribet C (2012) Well-defined critical association concentration and rapid adsorption at the air/water interface of a short amphiphilic polymer, amphipol A8-35: a study by F?rster resonance energy transfer and dynamic surface tension measurements. Langmuir 28:10372-0380 CrossRef
    21. Giusti, F, Kessler, P, Westh Hansen, R, Della Pia, EA, Le Bon, C, Mourier, G, Popot, J-L, Martinez, KL, Zoonens, M (2014). Synthesis of polyhistidine- or imidazole-bearing amphipols and their use for immobilized metal affinity chromatography and surface plasmon resonance studies of membrane proteins (in preparation)
    22. Glück JM, Wittlich M, Feuerstein S, Hoffmann S, Willbold D, Koenig BW (2009) Integral membrane proteins in nanodiscs can be studied by solution NMR spectroscopy. J Am Chem Soc 131:12060-2061 CrossRef
    23. Gohon Y, Pavlov G, Timmins P, Tribet C, Popot J-L, Ebel C (2004) Partial specific volume and solvent interactions of amphipol A8-35. Anal Biochem 334:318-34 CrossRef
    24. Gohon Y, Giusti F, Prata C, Charvolin D, Timmins P, Ebel C, Tribet C, Popot J-L (2006) Well-defined nanoparticles formed by hydrophobic assembly of a short and polydisperse random terpolymer, amphipol A8-35. Langmuir 22:1281-290 CrossRef
    25. Gohon Y, Dahmane T, Ruigrok R, Schuck P, Charvolin D, Rappaport F, Timmins P, Engelman DM, Tribet C, Popot J-L, Ebel C (2008) Bacteriorhodopsin/amphipol complexes: structural and functional properties. Biophys J 94:3523-537 CrossRef
    26. Guinier A, Fournet G (1955) Small-angle scattering of X-rays. John Wiley and sons, New York
    27. Hagn F, Etzkorn M, Raschle T, Wagner G (2013) Optimized phospholipid bilayer nanodiscs facilitate high-resolution structure determination of membrane proteins. J Am Chem Soc 135:1919-925 CrossRef
    28. Hamberg M, Svensson J, Samuelsson B (1974) Prostaglandin endoperoxides. A new concept concerning the mode of action and release of prostaglandins. Proc Natl Acad Sci USA 71:3824-828 CrossRef
    29. Hernandez H, Robinson CV (2007) Determining the stoichiometry and interactions of macromolecular assemblies from mass spectrometry. Nat Protocols 2:715-26 CrossRef
    30. Huynh, KW, Cohen, MR, Moiseenkova-Bell, VY (2014). Application of amphipols for structure-functional analysis of TRP channels (submitted for publication)
    31. Kang CB, Li Q (2011) Solution NMR study of integral membrane proteins. Curr Opin Struct Biol 15:560-69 CrossRef
    32. Kanu AB, Dwivedi P, Tam M, Matz L, Hill HH Jr (2008) Ion mobility: mass spectrometry. J Mass Spectrom 43:1-2 CrossRef
    33. Kay LE, Ikura M, Tschudin R, Bax A (1990) Three-dimensional triple resonance NMR spectroscopy of isotopically enriched proteins. J Magn Reson 89:496-14
    34. Kline SR (2006) Reduction and analysis of SANS and USANS data using IGOR Pro. J Appl Crystall 39:895-00 CrossRef
    35. Le Bon, C, Della Pia, EA, Giusti, F, Lloret, N, Zoonens, M, Martinez, KL, Popot, J-L (2014a). Synthesis of an oligonucleotide-derivatized amphipol and its use to trap and immobilize membrane proteins. Nucleic Acids Res (in press)
    36. Le Bon, C, Popot, J-L, Giusti, F (2014b). Labeling and functionalizing amphipols for biological applications. J Membr Biol (in press)
    37. Leney AC, McMorran LM, Radford SE, Ashcroft AE (2012) Amphipathic polymers enable the study of functional membrane proteins in the gas phase. Anal Chem 84:9841-847 CrossRef
    38. Loubat C, Javidan A, Boutevin B (2000) Etude de la télomérisation de l’acide acrylique par les mercaptans. 1. Télomérisation de l’acide acrylique par l’acide thioglycolique. Influence de la nature du solvant sur la valeur de la constante de transfert et de / k p/?em class="a-plus-plus">k te. Macromol Chem Phys 201:2845-852 CrossRef
    39. Lynn GW, Heller W, Urban V, Wignall GD, Weiss K, Myles DAA (2006) A dedicated facility for neutron structural biology at Oak Ridge National Laboratory. Physica B 385-86:880-82 CrossRef
    40. Mazhab-Jafari MT, Marshall CB, Stathopulos PB, Kobashigawa Y, Stambolic V, Kay LE, Inagaki F, Ikura M (2013) Membrane-dependent modulation of the mTOR activator Rheb: NMR observations of a GTPase tethered to a lipid-bilayer nanodisc. J Am Chem Soc 135:3367-370 CrossRef
    41. McGregor C-L, Chen L, Pomroy NC, Hwang P, Go S, Chakrabartty A, Privé GG (2003) Lipopeptide detergents designed for the structural study of membrane proteins. Nat Biotechnol 21:171-76 CrossRef
    42. Opa?i?, M, Giusti, F, Broos, J, Popot, J-L (2014). Isolation of / Escherichia coli mannitol permease, EIImtl, trapped in amphipol A8-35 (submitted for publication)
    43. Pavia AA, Pucci B, Riess JG, Zarrif L (1992) New perfluoroalkyl telomeric non-ionic surfactants: synthesis, physicochemical and biological properties. Makromol Chem 193:2505-517 CrossRef
    44. Perlmutter JD, Drasler WJ, Xie W, Gao J, Popot J-L, Sachs JN (2011) All-atom and coarse-grained molecular dynamics simulations of a membrane protein stabilizing polymer. Langmuir 27:10523-0537 CrossRef
    45. Perlmutter, JD, Popot, J-L, Sachs, JN (2014). Molecular dynamics simulations of a membrane protein/amphipol complex (submitted for publication)
    46. Picard M, Dahmane T, Garrigos M, Gauron C, Giusti F, le Maire M, Popot J-L, Champeil P (2006) Protective and inhibitory effects of various types of amphipols on the Ca2+-ATPase from sarcoplasmic reticulum: a comparative study. Biochemistry 45:1861-869 CrossRef
    47. Planchard, N, Point, E, Dahmane, T, Giusti, F, Renault, M, Le Bon, C, Durand, G, Milon, A, Guittet, E, Zoonens, M, Popot, J-L, Catoire, LJ (2014). The use of amphipols for solution NMR studies of membrane proteins: advantages and limitations as compared to other solubilizing media. J Membr Biol (in press)
    48. Plevin, MJ, Boisbouvier J (2012). Isotope-labelling of methyl groups for NMR studies of large proteins. In M Clore and J Potts (eds) Recent developments in biomolecular NMR, Royal Society of Chemistry pp 1-4
    49. Pocanschi C, Popot J-L, Kleinschmidt JH (2013) Folding and stability of outer membrane protein A (OmpA) from / Escherichia coli in an amphipathic polymer, amphipol A8-35. Eur Biophys J 42:103-18 CrossRef
    50. Popot J-L (2010) Amphipols, nanodiscs, and fluorinated surfactants: three non-conventional approaches to studying membrane proteins in aqueous solutions. Annu Rev Biochem 79:737-75 CrossRef
    51. Popot J-L, Althoff T, Bagnard D, Banères J-L, Bazzacco P, Billon-Denis E, Catoire LJ, Champeil P, Charvolin D, Cocco MJ, Crémel G, Dahmane T, de la Maza LM, Ebel C, Gabel F, Giusti F, Gohon Y, Goormaghtigh E, Guittet E, Kleinschmidt JH, Kühlbrandt W, Le Bon C, Martinez KL, Picard M, Pucci B, Rappaport F, Sachs JN, Tribet C, van Heijenoort C, Wien F, Zito F, Zoonens M (2011) Amphipols from A to Z. Annu Rev Biophys 40:379-08 CrossRef
    52. Presser A, Hüfner A (2004) Trimethylsilyldiazomethane. A mild and efficient reagent for the methylation of carboxylic acids and alcohols in natural products. Monatsch Chem 135:1015-022 CrossRef
    53. Privé G (2009) Lipopeptide detergents for membrane protein studies. Curr Opin Struct Biol 19:1- CrossRef
    54. Raschle T, Hiller S, Yu TY, Rice AJ, Walz T, Wagner G (2009) Structural and functional characterization of the integral membrane protein VDAC-1 in lipid bilayer nanodiscs. J Am Chem Soc 131:17777-7779 CrossRef
    55. Raschle T, Hiller S, Etzkorn M, Wagner G (2010) Nonmicellar systems for solution NMR spectroscopy of membrane proteins. Curr Opin Struct Biol 20:471-79 CrossRef
    56. Renault M (2008) Etudes structurales et dynamiques de la protéine membranaire KpOmpA par RMN en phase liquide et solide, Ph. D. Thesis, Université Paul Sabatier, Toulouse
    57. Salzmann M, Wider G, Pervushin K, Wüthrich K (1999) Improved sensitivity and coherence selection for [15N,1H]-TROSY elements in triple resonance experiments. J Biomol NMR 15:181-84 CrossRef
    58. Sanders CR II, Landis GC (1995) Reconstitution of membrane proteins into lipid-rich bilayered mixed micelles for NMR studies. Biochemistry 34:4030-040 CrossRef
    59. Sanders CR, Prosser RS (1998) Bicelles: a model membrane system for all seasons? Structure?6:1227-234 CrossRef
    60. Shenkarev ZO, Lyukmanova EN, Paramonov AS, Shingarova LN, Chupin VV, Kirpich-ni-kov MP, Blommers MJ, Arseniev AS (2010) Lipid-protein nanodiscs as reference medium in detergent screening for high-resolution NMR studies of integral membrane proteins. J Am Chem Soc 132:5628-629 CrossRef
    61. Sprangers R, Velyvis A, Kay LE (2007) Solution NMR of supramolecular complexes: providing new insights into function. Nat Meth 4:697-03 CrossRef
    62. Sverzhinsky, A, Qian, S, Yang, L, Allaire, M, Moraes, I, Ma, D, Chung, JW, Zoonens, M, Popot, J-L, Coulton, JW (2014). Amphipol-trapped ExbB—ExbD membrane protein complex from / Escherichia coli: A biochemical and structural case study (submitted for publication)
    63. Tehei, M, Giusti, F, Popot, J-L, Zaccai, G (2014). Thermal fluctuations in amphipol A8-35 measured by neutron scattering (submitted for publication)
    64. Tribet C, Audebert R, Popot J-L (1996) Amphipols: polymers that keep membrane proteins soluble in aqueous solutions. Proc Natl Acad Sci USA 93:15047-5050 CrossRef
    65. Tribet C, Diab C, Dahmane T, Zoonens M, Popot J-L, Winnik FM (2009) Thermodynamic characterization of the exchange of detergents and amphipols at the surfaces of integral membrane proteins. Langmuir 25:12623-2634 CrossRef
    66. Tzitzilonis C, Eichmann C, Maslennikov I, Choe S, Riek R (2013) Detergent/nanodisc screening for high-resolution NMR studies of an integral membrane protein containing a cytoplasmic domain. PLoS ONE 8:e54378 CrossRef
    67. Velasquez E, Pembouong G, Rieger J, Stoffelbach F, Boyron O, Charleux B, D’Agosto F, Lansalot M, Dufils P-E, Vinas J (2013) Poly(vinylidene chloride)-based amphiphilic block copolymers. Macromolecules 46:664-73 CrossRef
    68. Warschawski DE, Arnold AA, Beaugrand M, Gravel A, Chartrand E, Marcotte I (2011) Choosing membrane mimetics for NMR structural studies of transmembrane proteins. Biochim Biophys Acta 1808:1957-974 CrossRef
    69. Weidner SM, Trimpin S (2010) Mass spectrometry of synthetic polymers. Anal Chem 82:4811-829 CrossRef
    70. Yokomizo T, Kato K, Terawaki K, Izumi T, Shimizu T (2000) A second leukotriene B(4) receptor, BLT2. A new therapeutic target in inflammation and immunological disorders. J Exp Med 192:421-32 CrossRef
    71. Zaccai G, Jacrot B (1983) Small-angle neutron scattering. Annu Rev Biophys Bioeng 12:139-57 CrossRef
    72. Zoonens, M, Popot, J-L (2014). Amphipols for each season (submitted for publication)
    73. Zoonens M, Catoire LJ, Giusti F, Popot J-L (2005) NMR study of a membrane protein in detergent-free aqueous solution. Proc Natl Acad Sci USA 102:8893-898 CrossRef
    74. Zoonens M, Giusti F, Zito F, Popot J-L (2007) Dynamics of membrane protein/amphipol association studied by F?rster resonance energy transfer. Implications for in vitro studies of amphipol-stabilized membrane proteins. Biochemistry 46:10392-0404 CrossRef
  • 作者单位:Fabrice Giusti (1)
    Jutta Rieger (2) (3)
    Laurent J. Catoire (1)
    Shuo Qian (4)
    Antonio N. Calabrese (5)
    Thomas G. Watkinson (5)
    Marina Casiraghi (1)
    Sheena E. Radford (5)
    Alison E. Ashcroft (5)
    Jean-Luc Popot (1)

    1. Laboratoire de Physico-Chimie Moléculaire des Membranes Biologiques, UMR 7099, Institut de Biologie Physico-Chimique (FRC 550), Centre National de la Recherche Scientifique and Université Paris-7, 13 rue Pierre et Marie Curie, 75005, Paris, France
    2. UMR 8232, Institut Parisien de Chimie Moléculaire (IPCM), Equipe Chimie des Polymères, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
    3. UMR 8232, Institut Parisien de Chimie Moléculaire (IPCM), Equipe Chimie des Polymères, CNRS, 75005, Paris, France
    4. Center for Structural Molecular Biology and Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
    5. Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
  • ISSN:1432-1424
文摘
Amphipols are short amphipathic polymers that can substitute for detergents at the hydrophobic surface of membrane proteins (MPs), keeping them soluble in the absence of detergents while stabilizing them. The most widely used amphipol, known as A8-35, is comprised of a polyacrylic acid (PAA) main chain grafted with octylamine and isopropylamine. Among its many applications, A8-35 has proven particularly useful for solution-state NMR studies of MPs, for which it can be desirable to eliminate signals originating from the protons of the surfactant. In the present work, we describe the synthesis and properties of perdeuterated A8-35 (perDAPol). Perdeuterated PAA was obtained by radical polymerization of deuterated acrylic acid. It was subsequently grafted with deuterated amines, yielding perDAPol. The number-average molar mass of hydrogenated and perDAPol, ~4 and ~5?kDa, respectively, was deduced from that of their PAA precursors, determined by size exclusion chromatography in tetrahydrofuran following permethylation. Electrospray ionization–ion mobility spectrometry–mass spectrometry measurements show the molar mass and distribution of the two APols to be very similar. Upon neutron scattering, the contrast match point of perDAPol is found to be ~120?% D2O. In 1H-1H nuclear overhauser effect NMR spectra, its contribution is reduced to ~6?% of that of hydrogenated A8-35, making it suitable for extended uses in NMR spectroscopy. PerDAPol ought to also be of use for inelastic neutron scattering studies of the dynamics of APol-trapped MPs, as well as small-angle neutron scattering and analytical ultracentrifugation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700