用户名: 密码: 验证码:
Root and bacterial secretions regulate the interaction between plants and PGPR leading to distinct plant growth promotion effects
详细信息    查看全文
  • 作者:Dongmei Zhou ; Xing-Feng Huang ; Jacqueline M. Chaparro ; Dayakar V. Badri…
  • 关键词:Plant growth ; promoting rhizobacteria ; Root exudates ; ABC transporters ; Bacillus cereus ; Bacterial secretions
  • 刊名:Plant and Soil
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:401
  • 期:1-2
  • 页码:259-272
  • 全文大小:1,083 KB
  • 参考文献:Acea MJ, Moore CR, Alexander M (1988) Survival and growth of bacteria introduced into soil. Soil Biol Biochem 20:509–515. doi:10.​1016/​0038-0717(88)90066-1 CrossRef
    Ahmed E, Holmström SJM (2014) Siderophores in environmental research: roles and applications. Microb Biotechnol 7:196–208. doi:10.​1111/​1751-7915.​12117 CrossRef PubMed PubMedCentral
    Aliasgharzad N, Neyshabouri M, Salimi G (2006) Effects of arbuscular mycorrhizal fungi and Bradyrhizobium japonicum on drought stress of soybean. Biologia 61:S324–S328. doi:10.​2478/​s11756-006-0182-x CrossRef
    Almaghrabi OA, Massoud SI, Abdelmoneim TS (2013) Influence of inoculation with plant growth promoting rhizobacteria (PGPR) on tomato plant growth and nematode reproduction under greenhouse conditions. Saudi J Biol Sci 20:57–61. doi:10.​1016/​j.​sjbs.​2012.​10.​004 CrossRef PubMed PubMedCentral
    Azcón R, Medina A, Aroca R, Ruiz-Lozano JM (2013) Abiotic stress remediation by the arbuscular mycorrhizal symbiosis and rhizosphere bacteria/yeast Interactions. Mol Microb Ecol Rhizosphere. doi:10.​1002/​9781118297674.​ch93 , John Wiley & Sons, Inc
    Badri DV, Loyola-Vargas VM, Broeckling CD, De-la-Peña C, Jasinski M, Santelia D, Martinoia E, Sumner LW, Banta LM, Stermitz F, Vivanco JM (2008) Altered profile of secondary metabolites in the root exudates of Arabidopsis ATP-Binding cassette transporter mutants. Plant Physiol 146:762–771. doi:10.​1104/​pp.​ 107.​109587 CrossRef PubMed PubMedCentral
    Badri DV, Quintana N, El Kassis EG, Kim HK, Choi YH, Sugiyama A, Verpoorte R, Martinoia E, Manter DK, Vivanco JM (2009) An ABC transporter mutation alters root exudation of phytochemicals that provoke an overhaul of natural soil microbiota. Plant Physiol 151:2006–2017. doi:10.​1104/​pp.​ 109.​147462 CrossRef PubMed PubMedCentral
    Badri DV, Chaparro JM, Zhang RF, Shen QR, Vivanco JM (2013) Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome. J Biol Chem 288:10. doi:10.​1074/​jbc.​M112.​433300 CrossRef
    Bais HP, Fall R, Vivanco JM (2004) Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134:307–319. doi:10.​1104/​pp.​ 103.​028712 CrossRef PubMed PubMedCentral
    Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266. doi:10.​1146/​annurev.​arplant.​57.​032905.​105159 CrossRef PubMed
    Bertani G (1951) Studies on Lysogenesis I.: the mode of phage liberation by Lysogenic Escherichia coli. J. Bacteriol. 62:293–300
    Brimecombe M, Leij F, Lynch J (2001) Nematode community structure as a sensitive indicator of microbial perturbations induced by a genetically modified Pseudomonas fluorescens strain. Biol Fertil Soils 34:270–275. doi:10.​1007/​s003740100412 CrossRef
    Broeckling CD, Huhman DV, Farag MA, Smith JT, May GD, Mendes P, Dixon RA, Sumner LW (2005) Metabolic profiling of Medicago truncatula cell cultures reveals the effects of biotic and abiotic elicitors on metabolism. J Exp Bot 56:323–336. doi:10.​1093/​jxb/​eri058 CrossRef PubMed
    Campbell RG, Greaves MP (1990) Anatomy and community structure of the rhizosphere. In: Lynch JM (ed) The rhizosphere. Wiley, Chichester
    Chaparro JM, Badri DV, Bakker MG, Sugiyama A, Manter DK, Vivanco JM (2013) Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions. PLoS ONE 8, e55731. doi:10.​1371/​journal.​pone.​0055731 CrossRef PubMed PubMedCentral
    Chen Y, Cao S, Chai Y, Clardy J, Kolter R, Guo JH, Losick R (2012) A Bacillus subtilis sensor kinase involved in triggering biofilm formation on the roots of tomato plants. Mol Microbiol 85:418–430. doi:10.​1111/​j.​1365-2958.​2012.​08109.​x CrossRef PubMed PubMedCentral
    Chen Y, Yan F, Chai Y, Liu H, Kolter R, Losick R, Guo JH (2013) Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environ Microbiol 15:848–864. doi:10.​1111/​j.​1462-2920.​2012.​02860.​x CrossRef PubMed PubMedCentral
    Chet I (1990) Biological control of soil-borne plant pathogens with fungal antagonists in combination with soil treatments. In: Hornby D (ed) Biological control of soil-borne plant pathogens
    Chet I, Inbar J (1994) Biological control of fungal pathogens. Appl Biochem Biotechnol 48:37–43. doi:10.​1007/​BF02825358 CrossRef PubMed
    Crowley D (2006) Microbial siderophores in the plant rhizosphere. In: Barton L, Abadia J (eds) Iron nutrition in plants and rhizospheric microorganisms. Springer, Netherlands
    Davey ME, O’Toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867. doi:10.​1128/​MMBR.​64.​4.​847-867.​2000 CrossRef PubMed PubMedCentral
    Dawwam GE, Elbeltagy A, Emara HM, Abbas IH, Hassan MM (2013) Beneficial effect of plant growth promoting bacteria isolated from the roots of potato plant. Ann Agric Sci 58:195–201. doi:10.​1016/​j.​aoas.​2013.​07.​007
    de Werra P, Huser A, Tabacchi R, Keel C, Maurhofer M (2011) Plant- and microbe-derived compounds affect the expression of genes encoding antifungal compounds in a pseudomonad with biocontrol activity. Appl Environ Microbiol 77:2807–2812. doi:10.​1128/​aem.​01760-10 CrossRef PubMed PubMedCentral
    Dutta S, Podile AR (2010) Plant growth promoting rhizobacteria (PGPR): the bugs to debug the root zone. Crit Rev Microbiol 36:232–244. doi:10.​3109/​1040841100376680​6 CrossRef PubMed
    Dutta S, Rani TS, Podile AR (2013) Root exudate-induced alterations in Bacillus cereus cell wall contribute to root colonization and plant growth promotion. PLoS ONE 8, e78369. doi:10.​1371/​journal.​pone.​0078369 CrossRef PubMed PubMedCentral
    Fan TWM, Lane AN, Pedler J, Crowley D, Higashi RM (1997) Comprehensive analysis of organic ligands in whole root exudates using nuclear magnetic resonance and gas chromatography–mass spectrometry. Anal Biochem 251:57–68. doi:10.​1006/​abio.​1997.​2235 CrossRef PubMed
    Figueiredo M, Seldin L, Araujo F, Mariano R (2011) Plant growth promoting rhizobacteria: fundamentals and applications. In: Maheshwari DK (ed) Plant growth and health promoting bacteria. Springer, Berlin Heidelberg
    Fourcroy P, Sisó-Terraza P, Sudre D, Savirón M, Reyt G, Gaymard F, Abadía A, Abadia J, Álvarez-Fernández A, Briat J-F (2014) Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency. New Phytol 201:155–167. doi:10.​1111/​nph.​12471 CrossRef PubMed
    Frans AAMDL, James ML, Melissa JB (2007) Rhizodeposition and microbial populations. The Rhizosphere. CRC Press
    Frapolli M, Défago G, Moënne-Loccoz Y (2010) Denaturing gradient gel electrophoretic analysis of dominant 2,4-diacetylphloroglucinol biosynthetic phlD alleles in fluorescent Pseudomonas from soils suppressive or conducive to black root rot of tobacco. Soil Biol Biochem 42:649–656. doi:10.​1016/​j.​soilbio.​2010.​01.​005 CrossRef
    Frelet-Barrand A, Kolukisaoglu HU, Plaza S, Ruffer M, Azevedo L, Hortensteiner S, Marinova K, Weder B, Schulz B, Klein M (2008) Comparative mutant analysis of Arabidopsis ABCC-type ABC transporters: AtMRP2 contributes to detoxification, vacuolar organic anion transport and chlorophyll degradation. Plant Cell Physiol 49:557–569. doi:10.​1093/​pcp/​pcn034 CrossRef PubMed
    Gaedeke N, Klein M, Kolukisaoglu U, Forestier C, Muller A, Ansorge M, Becker D, Mamnun Y, Kuchler K, Schulz B, Mueller-Roeber B, Martinoia E (2001) The Arabidopsis thaliana ABC transporter AtMRP5 controls root development and stomata movement. EMBO J 20:1875–1887. doi:10.​1093/​emboj/​20.​8.​1875 CrossRef PubMed PubMedCentral
    Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:15. doi:10.​6064/​2012/​963401 CrossRef
    Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant–bacterium signaling processes. Soil Biol Biochem 37:395–412. doi:10.​1016/​j.​soilbio.​2004.​08.​030 CrossRef
    Gupta A, Gopal M, Tilak KV (2000) Mechanism of plant growth promotion by rhizobacteria. Indian J Exp Biol 38:856–862PubMed
    Halket JM, Przyborowska A, Stein SE, Mallard WG, Down S, Chalmers RA (1999) Deconvolution gas chromatography/mass spectrometry of urinary organic acids – potential for pattern recognition and automated identification of metabolic disorders. Rapid Commun Mass Spectrom 13:279–284. doi:10.​1002/​(SICI)1097-0231(19990228)13:​4<279:​:​AID-RCM478>3.​0.​CO;2-I CrossRef PubMed
    Herrera-Estrella A, Chet I (1999) Chitinases in biological control. EXS 87:171–184PubMed
    Hrynkiewicz K, Baum C, Leinweber P (2010) Density, metabolic activity, and identity of cultivable rhizosphere bacteria on Salix viminalis in disturbed arable and landfill soils. J Plant Nutr Soil Sci 173:747–756. doi:10.​1002/​jpln.​200900286 CrossRef
    Huang CJ, Tsay JF, Chang SY, Yang HP, Wu WS, Chen CY (2012) Dimethyl disulfide is an induced systemic resistance elicitor produced by Bacillus cereus C1L. Pest Manag Sci 68:1306–1310. doi:10.​1002/​ps.​3301 CrossRef PubMed
    Huang XF, Zhou DM, Guo JH, Manter DK, Reardon KF, Vivanco JM (2015) Bacillus spp. from rainforest soil promote plant growth under limited nitrogen conditions. J Appl Microbiol 118:672–684. doi:10.​1111/​jam.​12720 CrossRef PubMed
    Idris EE, Iglesias DJ, Talon M, Borriss R (2007) Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol Plant-Microbes Interact 20:619–626. doi:10.​1094/​mpmi-20-6-0619 CrossRef
    Jasinski M, Ducos E, Martinoia E, Boutry M (2003) The ATP-Binding cassette transporters: structure, function, and gene family comparison between rice and Arabidopsis. Plant Physiol 131:1169–1177. doi:10.​1104/​pp.​ 102.​014720 CrossRef PubMed PubMedCentral
    Joo HS, Chang CS (2005) Production of protease from a new alkalophilic Bacillus sp. I-312 grown on soybean meal: optimization and some properties. Process Biochem 40:1263–1270. doi:10.​1016/​j.​procbio.​2004.​05.​010 CrossRef
    Kang J, Hwang JU, Lee M, Kim YY, Assmann SM, Martinoia E, Lee Y (2010) PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proc Natl Acad Sci 107:2355–2360. doi:10.​1073/​pnas.​0909222107 CrossRef PubMed PubMedCentral
    Karlidag H, Esitken A, Turan M, Sahin F (2007) Effects of root inoculation of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient element contents of leaves of apple. Sci Hortic 114:16–20. doi:10.​1016/​j.​scienta.​2007.​04.​013 CrossRef
    Keshav Prasad Shukla SS, Singh NK, Singh V, Tiwari K, Singh S (2011) Nature and role of root exudates: efficacy in bioremediation. Afr J Biotechnol 10:9717–9724
    Khalid A, Arshad M, Zahir ZA (2004) Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J Appl Microbiol 96:473–480. doi:10.​1046/​j.​1365-2672.​2003.​02161.​x CrossRef PubMed
    Kim HJ, Chen F, Wang X, Rajapakse NC (2005) Effect of chitosan on the biological properties of sweet basil (Ocimum basilicum L.). J Agric Food Chem 53:3696–3701. doi:10.​1021/​jf0480804 CrossRef PubMed
    Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radishes. Proceedings of the 4th International Conference on Plant Pathogenic Bacteria. Station de pathologic Vegetal et Phytobacteriologic, Agners, France
    Kloepper J, Leong J, Teintze M, Schroth M (1980) Pseudomonas siderophores: a mechanism explaining disease-suppressive soils. Curr Microbiol 4:317–320. doi:10.​1007/​BF02602840 CrossRef
    Knauth S, Hurek T, Brar D, Reinhold-Hurek B (2005) Influence of different Oryza cultivars on expression of nifH gene pools in roots of rice. Environ Microbiol 7:1725–1733. doi:10.​1111/​j.​1462-2920.​2005.​00841.​x CrossRef PubMed
    Kretzschmar T, Kohlen W, Sasse J, Borghi L, Schlegel M, Bachelier JB, Reinhardt D, Bours R, Bouwmeester HJ, Martinoia E (2012) A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature 483:341–344. doi:10.​1038/​nature10873 CrossRef PubMed
    Labuschagne N, Pretorius T, Idris AH (2011) Plant growth promoting rhizobacteria as biocontrol agents against soil-borne plant diseases. In: Maheshwari DK (ed) Plant growth and health promoting bacteria. Springer, Berlin Heidelberg
    Lambert B, Joos H (1989) Fundamental aspects of rhizobacterial plant growth promotion research. Trends Biotechnol 7:215–219. doi:10.​1016/​0167-7799(89)90107-8 CrossRef
    Lee YS, Kim YH, Kim SB (2005) Changes in the respiration, growth, and vitamin C content of soybean sprouts in response to chitosan of different molecular weights. HortSci 40:1333–1335
    Li J, Glick BR (2001) Transcriptional regulation of the Enterobacter cloacae UW4 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene (acdS). Can J Microbiol 47:359–367. doi:10.​1139/​w01-009 CrossRef PubMed
    Loon LC, Bakker PAHM (2006) Induced systemic resistance as a mechanism of disease suppression by rhizobacteria. In: Siddiqui Z (ed) PGPR: biocontrol and biofertilization. Springer, Netherlands
    Loyola-Vargas VM, Broeckling CD, Badri D, Vivanco JM (2007) Effect of transporters on the secretion of phytochemicals by the roots of Arabidopsis thaliana. Planta 225:301–310. doi:10.​1007/​s00425-006-0349-2 CrossRef PubMed
    Lucy M, Reed E, Glick B (2004) Applications of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek 86:1–25. doi:10.​1023/​B:​ANTO.​0000024903.​10757.​6e CrossRef PubMed
    Malhotra M, Srivastava S (2006) Targeted engineering of Azospirillum brasilense SM with indole acetamide pathway for indoleacetic acid over-expression. Can J Microbiol 52:1078–1084. doi:10.​1139/​w06-071 CrossRef PubMed
    Malhotra M, Srivastava S (2009) Stress-responsive indole-3-acetic acid biosynthesis by Azospirillum brasilense SM and its ability to modulate plant growth. Eur J Soil Biol 45:73–80. doi:10.​1016/​j.​ejsobi.​2008.​05.​006 CrossRef
    Martínez-Viveros O, Jorquera MA, Crowley DE, Gajardo G, Mora ML (2010) Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr 10:293–319. doi:10.​4067/​S0718-9516201000010000​6 CrossRef
    Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166:525–530. doi:10.​1016/​j.​plantsci.​2003.​10.​025 CrossRef
    Miethke M, Marahiel MA (2007) Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71:413–451. doi:10.​1128/​mmbr.​00012-07 CrossRef PubMed PubMedCentral
    Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497. doi:10.​1111/​j.​1399-3054.​1962.​tb08052.​x CrossRef
    Nicholas CU (2007) Types, amounts, and possible functions of compounds released into the Rhizosphere by soil-grown plants. The Rhizosphere. CRC Press.
    Niu DD, Liu HX, Jiang CH, Wang YP, Wang QY, Jin HL, Guo JH (2011) The plant growth–promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate- and jasmonate/ethylene-dependent signaling pathways. Mol Plant-Microbe Interact 24:533–542. doi:10.​1094/​MPMI-09-10-0213 CrossRef PubMed
    Notz R, Maurhofer M, Schnider-Keel U, Duffy B, Haas D, Defago G (2001) Biotic factors affecting expression of the 2,4-Diacetylphloroglucinol biosynthesis gene phlA in Pseudomonas fluorescens biocontrol strain CHA0 in the rhizosphere. Phytopathology 91:873–881. doi:10.​1094/​phyto.​2001.​91.​9.​873 CrossRef PubMed
    Orhan E, Esitken A, Ercisli S, Turan M, Sahin F (2006) Effects of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient contents in organically growing raspberry. Sci Hortic 111:38–43. doi:10.​1016/​j.​scienta.​2006.​09.​002 CrossRef
    Orr CH, James A, Leifert C, Cooper JM, Cummings SP (2011) Diversity and activity of free-living nitrogen-fixing bacteria and total bacteria in organic and conventionally managed soils. Appl Environ Microbiol 77:911–919. doi:10.​1128/​aem.​01250-10 CrossRef PubMed PubMedCentral
    Paul D, Lade H (2014) Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: a review. Agron Sustain Dev 34:737–752. doi:10.​1007/​s13593-014-0233-6 CrossRef
    Peterson SB, Dunn AK, Klimowicz AK, Handelsman J (2006) Peptidoglycan from Bacillus cereus mediates commensalism with rhizosphere bacteria from the cytophaga-flavobacterium group. Appl Environ Microbiol 72:5421–5427. doi:10.​1128/​aem.​02928-05 CrossRef PubMed PubMedCentral
    Pilet PE, Saugy M (1987) Effect on root growth of endogenous and applied IAA and ABA: a critical reexamination. Plant Physiol 83:33–38. doi:10.​1104/​pp.​ 83.​1.​33 CrossRef PubMed PubMedCentral
    Prigent-Combaret C, Blaha D, Pothier JF, Vial L, Poirier MA, Wisniewski-Dye F, Moenne-Loccoz Y (2008) Physical organization and phylogenetic analysis of acdR as leucine-responsive regulator of the 1-aminocyclopropane-1-carboxylate deaminase gene acdS in phytobeneficial Azospirillum lipoferum 4B and other Proteobacteria. FEMS Microbiol Ecol 65:202–219. doi:10.​1111/​j.​1574-6941.​2008.​00474.​x CrossRef PubMed
    Přikryl Z, Vančura V (1980) Root exudates of plants. Plant Soil 57:69–83. doi:10.​1007/​bf02139643 CrossRef
    Ramaekers L, Remans R, Rao IM, Blair MW, Vanderleyden J (2010) Strategies for improving phosphorus acquisition efficiency of crop plants. Field Crop Res 117:169–176. doi:10.​1016/​j.​fcr.​2010.​03.​001 CrossRef
    Rea PA (2007) Plant ATP-binding cassette transporters. Annu Rev Plant Biol 58:347–375. doi:10.​1146/​annurev.​arplant.​57.​032905.​105406 CrossRef PubMed
    Richardson AE, Simpson RJ (2011) Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol 156:989–996. doi:10.​1104/​pp.​ 111.​175448 CrossRef PubMed PubMedCentral
    Rothballer M, Schmid M, Fekete A, Hartmann A (2005) Comparative in situ analysis of ipdC-gfpmut3 promoter fusions of Azospirillum brasilense strains Sp7 and Sp245. Environ Microbiol 7:1839–1846. doi:10.​1111/​j.​1462-2920.​2005.​00848.​x CrossRef PubMed
    Rovira A (1969) Plant root exudates. Bot Rev 35:35–57. doi:10.​1007/​BF02859887 CrossRef
    Růžička K, Strader LC, Bailly A, Yang H, Blakeslee J, Łangowski Ł, Nejedlá E, Fujita H, Itoh H, Syōno K, Hejátko J, Gray WM, Martinoia E, Geisler M, Bartel B, Murphy AS, Friml J (2010) Arabidopsis PIS1 encodes the ABCG37 transporter of auxinic compounds including the auxin precursor indole-3-butyric acid. Proc Natl Acad Sci U S A 107:10749–10753. doi:10.​1073/​pnas.​1005878107 CrossRef PubMed PubMedCentral
    Ryan AD, Kinkel LL, Schottel JL (2004) Effect of pathogen isolate, potato cultivar, and antagonist strain on potato scab severity and biological control. Biocontrol Sci Tech 14:301–311. doi:10.​1080/​0958315041000166​5187 CrossRef
    Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Pare PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci 100:4927–4932. doi:10.​1073/​pnas.​0730845100 CrossRef PubMed PubMedCentral
    Sayyed RZ, Gangurde NS, Patel PR, Josh SA, Chincholkar SB (2010) Siderophore production by Alcaligenes faecalis and its application for growth promotion in Arachis hypogaea. Indian J Biotechnol 9:302–307
    Sgroy V, Cassán F, Masciarelli O, Papa M, Lagares A, Luna V (2009) Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. Appl Microbiol Biotechnol 85:371–381. doi:10.​1007/​s00253-009-2116-3 CrossRef PubMed
    Sharp R (2013) A review of the applications of chitin and its derivatives in agriculture to modify plant-microbial interactions and improve crop yields. Agronomy 3:36. doi:10.​3390/​agronomy3040757 CrossRef
    Siddiqui IA, Shaukat SS (2003) Plant species, host age and host genotype effects on Meloidogyne incognita biocontrol by Pseudomonas fluorescens strain CHA0 and its genetically-modified derivatives. J Phytopathol 151:231–238. doi:10.​1046/​j.​1439-0434.​2003.​00716.​x CrossRef
    Somers E, Ptacek D, Gysegom P, Srinivasan M, Vanderleyden J (2005) Azospirillum brasilense produces the auxin-like phenylacetic acid by using the key enzyme for indole-3-acetic acid biosynthesis. Appl Environ Microbiol 71:1803–1810. doi:10.​1128/​aem.​71.​4.​1803-1810.​2005 CrossRef PubMed PubMedCentral
    Stein M, Dittgen J, Sánchez-Rodríguez C, Hou BH, Molina A, Schulze-Lefert P, Lipka V, Somerville S (2006) Arabidopsis PEN3/PDR8, an ATP binding cassette transporter, contributes to nonhost resistance to inappropriate pathogens that enter by direct penetration. Plant Cell Online 18:731–746. doi:10.​1105/​tpc.​105.​038372 CrossRef
    Stenfors Arnesen LP, Fagerlund A, Granum PE (2008) From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol Rev 32:579–606. doi:10.​1111/​j.​1574-6976.​2008.​00112.​x CrossRef PubMed
    Strader LC, Bartel B (2009) The Arabidopsis pleiotropic drug resistance8/ABCG36 ATP binding cassette transporter modulates sensitivity to the auxin precursor indole-3-butyric acid. Plant Cell 21:1992–2007. doi:10.​1105/​tpc.​109.​065821 CrossRef PubMed PubMedCentral
    Sugiyama A, Shitan N, Yazaki K (2007) Involvement of a soybean ATP-binding cassette-type transporter in the secretion of genistein, a signal flavonoid in Legume-Rhizobium symbiosis. Plant Physiol 144:2000–2008. doi:10.​1104/​pp.​ 107.​096727 CrossRef PubMed PubMedCentral
    Wang CJ, Yang W, Wang C, Gu C, Niu DD, Liu HX, Wang YP, Guo JH (2012) Induction of drought tolerance in cucumber plants by a consortium of three plant growth-promoting rhizobacterium strains. PLoS ONE 7, e52565. doi:10.​1371/​journal.​pone.​0052565 CrossRef PubMed PubMedCentral
    Wei LH, Xue QY, Wei BQ, Wang YM, Li SM, Chen LF, Guo JH (2010) Screening of antagonistic bacterial strains against Meloidogyne incognita using protease activity. Biocontrol Sci Tech 20:739–750. doi:10.​1080/​0958315100371410​9 CrossRef
    Weller DM (1988) Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol 26:379–407. doi:10.​1146/​annurev.​py.​26.​090188.​002115 CrossRef
    Yazaki K (2005) Transporters of secondary metabolites. Curr Opin Plant Biol 8:301–307. doi:10.​1016/​j.​pbi.​2005.​03.​011 CrossRef PubMed
    Yazaki K, Sasaki K, Tsurumaru Y (2009) Prenylation of aromatic compounds, a key diversification of plant secondary metabolites. Phytochemistry 70:1739–1745. doi:10.​1016/​j.​phytochem.​2009.​08.​023 CrossRef PubMed
    Zakharova EA, Iosipenko AD, Ignatov VV (2000) Effect of water-soluble vitamins on the production of indole-3-acetic acid by Azospirillum brasilense. Microbiol Res 155:209–214. doi:10.​1016/​s0944-5013(00)80034-8 CrossRef PubMed
    Zhou DM, Wang KP, Liu HX, Gu C, Guo JH (2014) Field evaluation of different application methods of the mixture of Bacillus cereus strain AR156 and Bacillus subtilis strain SM21 on pepper growth and disease resistance. Biocontrol Sci Tech 24:1451–1468. doi:10.​1080/​09583157.​2014.​945899 CrossRef
  • 作者单位:Dongmei Zhou (1) (2) (3) (4) (5)
    Xing-Feng Huang (5) (6)
    Jacqueline M. Chaparro (5)
    Dayakar V. Badri (5)
    Daniel K. Manter (7)
    Jorge M. Vivanco (5)
    Jianhua Guo (1) (2) (3) (4)

    1. Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
    2. Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing Agricultural University, Ministry of Education, Nanjing, 210095, China
    3. National and Local Joint Green Pesticide Formulation and Application Technology Engineering Research Center, Nanjing Agricultural University, Ministry of Education, Nanjing, 210095, China
    4. Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Ministry of Education, Nanjing, 210095, China
    5. Center for Rhizosphere Biology, Colorado State University, Fort Collins, CO, 80523, USA
    6. Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, 80523, USA
    7. USDA-ARS Soil–Plant–Nutrient Research Unit, Fort Collins, CO, 80526, USA
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Sciences
    Soil Science and Conservation
    Plant Physiology
    Ecology
  • 出版者:Springer Netherlands
  • ISSN:1573-5036
文摘
Background and aims Plant growth-promoting rhizobacteria (PGPR) have garnered interest in agriculture due to their ability to influence the growth and production of host plants. ATP-binding cassette (ABC) transporters play important roles in plant-microbe interactions by modulating plant root exudation. The present study aimed to provide a more precise understanding of the mechanism and specificity of the interaction between PGPR and host plants.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700