用户名: 密码: 验证码:
An improved method for the simultaneous determination of photosynthetic O2 evolution and CO2 consumption in Rhizophora mucronata leaves
详细信息    查看全文
  • 作者:T. Z. Ulqodry ; A. Nose ; S. -H. Zheng
  • 关键词:carbon dioxide consumption ; oxygen evolution ; photosynthetic performance
  • 刊名:Photosynthetica
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:54
  • 期:1
  • 页码:152-157
  • 全文大小:306 KB
  • 参考文献:Adamec L.: Photosynthetic characteristics of the aquatic carnivorous plant Aldrovanda vesiculosa. — Aquat. Bot. 59: 297–306, 1997.CrossRef
    Berge T., Daugbjerg N., Hansen P.J. et al.: Effect of lowered pH on marine phytoplankton growth rates. — Mar. Ecol. Prog. Ser. 416: 79–91, 2010.CrossRef
    Berggren M., Lapierre J.F., Giorgio P.A.: Magnitude and regulation of bacterioplankton respiratory quotient across freshwater environmental gradients. — ISME J. 6: 984–993, 2012.CrossRef PubMed PubMedCentral
    Brown S.: Photosynthesis and respiration in leaf slices. — Biochem. Educ. 26: 164–167, 1998.CrossRef
    Chen C.Y., Durbin E.G.: Effects of pH on the growth and carbon uptake of marine phytoplankton. — Mar. Ecol. Prog. Ser. 109: 83–94, 1994.CrossRef
    Chisholm J.R.M.: Photosynthesis, calcification, and photoadaptation in reef-building crustose corraline algae on the great Barrier Reef. — PhD. Thesis. Pp. 223. James Cook University of North Queensland, Townsville 1998.
    Espie G.S., Colman B.: Inorganic carbon uptake during photosynthesis. — Plant Physiol. 80: 870–876, 1986.CrossRef PubMed PubMedCentral
    Falkowski P.G., Raven J.A.: Aquatic Photosynthesis. Pp. 375. Blackwell Scientific Publishers, Oxford, London 1997.
    Gansert D., Burgdorf M., Lösch R.: A novel approach to the in situ measurement of oxygen concentrations in the sapwood of woody plants. — Plant Cell Environ. 24: 1055–1064, 2001.CrossRef
    Gevaert F., Delebecq G., Menu D. et al.: A fully automated system for measurements of photosynthetic oxygen exchange under immersed conditions: an example of its use in Laminaria digitata (Heterokontophyta: Phaeophyceae). — Limnol. Oceanogr.-Meth. 9: 361–379, 2011.CrossRef
    Glud R.N., Wenzhöfer F., Tengberg A. et al.: Distribution of oxygen in surface sediments from central Sagami Bay, Japan: in situ measurements by microelectrodes and planar optodes. — Deep-Sea Res. I 52: 1974–1987, 2005.CrossRef
    Ishii R., Yamagishi T., Murata Y.: On a method for measuring photosynthesis and respiration of leaf slices with an oxygen electrode. — Japan. J. Crop. Sci. 46: 53–57, 1977.CrossRef
    Isobe K., Koba K., Ueda S. et al.: A simple and rapid GC/MS method for the simultaneous determination of gaseous metabolites. — J. Microbiol. Meth. 84: 46–51, 2011.CrossRef
    Kawamitsu Y., Boyer J.S.: Photosynthesis and carbon storage between tides in a brown alga, Fucus vesiculosus. — Mar. Biol. 133: 361–369, 1999.CrossRef
    Laws E.A., Landry M.R., Barber R.T. et al.: Carbon cycling in primary production bottle incubations: inferences from grazing experiments and photosynthetic studies using 14C and 18O in the Arabian Sea. — Deep-Sea Res. II 47: 1339–1352, 2000.CrossRef
    Maberly S.C., Spence D.H.N.: Photosynthetic inorganic carbon use by freshwater plants. — J. Ecol. 71: 705–724, 1983.CrossRef
    Moore R.T., Miller P.C., Ehlinger J. et al.: Seasonal trends in gas exchange characteristics of three mangrove species. — Photosynthetica 7: 387–394, 1973.
    Nielsen S.L., Nielsen H.D.: Pigments, photosynthesis and photoinhibition in two amphibious plants: consequences of varying carbon availability. — New Phytol. 170: 311–319, 2006.CrossRef PubMed
    Okimoto Y., Nose A., Katsuta Y. et al.: Gas exchange analysis for estimating net CO2 fixation capacity of mangrove (Rhizophora stylosa) forest in the mouth of river Fukido, Ishigaki Island, Japan. — Plant Prod. Sci. 10: 303–313, 2007.CrossRef
    Okimoto Y., Nose A., Ikeda, K. et al.: An estimation of CO2 fixation capacity in mangrove forest using two methods of CO2 gas exchange and growth curve analysis. — Wetl. Ecol. Manag. 16: 155–171, 2008.CrossRef
    Pierini S.A., Thomaz S.M.: Effects of inorganic carbon source on photosynthetic rates of Egeria najas Planchon and Egeria densa Planchon (Hydrocharitaceae). — Aquat. Bot. 78: 135–146, 2004.CrossRef
    Riebesell U., Schulz K.G., Bellerby R.G.J. et al.: Enhanced biological carbon consumption in a high CO2 ocean. — Nature 450: 545–548, 2007.CrossRef PubMed
    Rosenberg G., Littler D.S., Littler M.M. et al.: Primary production and photosynthetic quotients of seaweed from Sao Paulo State, Brazil. — Bot. Mar. 38: 369–377, 1995.CrossRef
    Shevela D., Eaton-Rye J.J., Shen J. et al.: Photosystem II and the unique role of bicarbonate: A historical perspective. — Biochim. Biophys. Acta 1817: 1134–1151, 2012.CrossRef PubMed
    Sipior J., Eichhorn L.R., Lakowicz J.R. et al.: Phase fluorometric optical carbon dioxide gas sensor for fermentation off-gas monitoring. — Biotechnol. Progr. 12: 266–271, 1996.CrossRef
    Sobrado M.A.: Leaf characteristics and gas exchange of the mangrove Laguncularia racemosa as affected by salinity. — Photosynthetica 43: 217–221, 2005.CrossRef
    Stemler A.J.: The bicarbonate effect, oxygen evolution, and the shadow of Otto Warburg. — Photosynth. Res. 73: 177–183, 2002.CrossRef PubMed
    Suzumura M., Miyajima T., Hata H. et al.: Cycling of phosphorus maintains the production of microphytobenthic communities in carbonate sediments of a coral reef. — Limnol. Oceanogr. 47: 771–781, 2002.CrossRef
    Taddei D., Cuet P., Frouin P. et al.: Low community photosynthetic quotient in coral reef sediments. — CR Biol. 331: 668–677, 2008.CrossRef
    Ulqodry T.Z., Matsumoto F., Okimoto Y. et al.: Study on photosynthetic responses and chlorophyll fluorescence in Rhizophora mucronata seedlings under shade regimes. — Acta Physiol. Plant. 36: 1903–1917, 2014.CrossRef
    Warkentin M., Freese H.M., Karsten U. et al.: New and fast method to quantify respiration rates of bacterial and plankton communities in freshwater ecosystems by using optical oxygen sensor spots. — Appl. Environ. Microb. 73: 6722–6729, 2007.CrossRef
    Williams P.J.L., Robertson J.E.: Overall planktonic oxygen and carbon dioxide metabolisms: the problem of reconciling observations and calculations of photosynthetic quotients. — J. Plankton Res. 13: 153–169, 1991.
    Wu Z.-H., Yang C.-W., Yang M.-Y.: Photosynthesis, photosystem II efficiency, amino acid metabolism and ion distribution in rice (Oryza sativa L.) in response to alkaline stress. — Photosynthetica 52: 157–160, 2014.CrossRef
    Wydrzynski T., Govindjee: New site of bicarbonate effect in photosystem II of photosynthesis-evidence from chlorophyll fluorescence transients in spinach chloroplasts. — Biochim. Biophys. Acta 387: 403–408, 1975.CrossRef PubMed
    Zimmerman R.C., Cabello-Pasini A., Alberte R.S.: Modeling daily production of aquatic macrophytes from irradiance measurements: a comparative analysis. — Mar. Ecol. Prog.Ser. 114: 185–96, 1994.CrossRef
  • 作者单位:T. Z. Ulqodry (1) (3)
    A. Nose (2)
    S. -H. Zheng (2)

    1. The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
    3. Department of Marine Science, Sriwijaya University, South Sumatera, 30662, Indonesia
    2. Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga, 840-8502, Japan
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Physiology
  • 出版者:Springer Netherlands
  • ISSN:1573-9058
文摘
The photosynthetic gas-exchange has been assessed traditionally either as O2 evolution or CO2 consumption. In this study, we used a liquid-phase O2 electrode combined with CO2 optodes to examine simultaneously photosynthesis in intact leaves of mangrove Rhizophora mucronata. We verified suitable conditions for leaf photosynthetic rates by assessing pH levels and NaHCO3 concentrations and compared these to the gas-exchange method at various PAR levels. The photosynthetic rate in response to pH exhibited a similar pattern both for O2 evolution and CO2 consumption, and higher rates were associated with intermediate pH compared with low and high pH values. The net photosynthetic quotient (PQ) of R. mucronata leaves ranged from 1.04–1.28. The PQ values, which were never lesser than 1, suggested that photorespiration did not occur in R. mucronata leaves under aqueous conditions. The similar maximum photosynthetic rates suggested that all measurements had a high capacity to adjust the photosynthetic apparatus under a light saturation condition. The simultaneous measurements of O2 evolution and CO2 consumption using the Clark oxygen electrode polarographic sensor with the CO2 optode sensor provided a simple, stable, and precise measurement of PQ under aqueous and saturated light conditions. Additional key words carbon dioxide consumption oxygen evolution photosynthetic performance

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700