用户名: 密码: 验证码:
An integrated structural health monitoring system based on electromechanical impedance and guided ultrasonic waves
详细信息    查看全文
  • 作者:Vincenzo Gulizzi ; Piervincenzo Rizzo
  • 关键词:Guided ultrasonic waves ; Electromechanical impedance method ; Structural health monitoring ; Damage detection
  • 刊名:Journal of Civil Structural Health Monitoring
  • 出版年:2015
  • 出版时间:July 2015
  • 年:2015
  • 卷:5
  • 期:3
  • 页码:337-352
  • 全文大小:2,160 KB
  • 参考文献:1.Adams D (2007) Health monitoring of structural materials and components: methods with applications. Wiley, Hoboken, NJView Article
    2.Giurgiutiu V (2007) Structural health monitoring: with piezoelectric wafer active sensors. Academic Press, Waltham, MA
    3.Balageas D, Fritzen CP, G眉emes A (2010) Structural health monitoring. Wiley, Hoboken, NJ
    4.Farrar CR, Worden K (2012) Structural health monitoring: a machine learning perspective. Wiley, Hoboken, NJView Article
    5.Rose JL (1999) Ultrasonic waves in solid media. Cambridge University Press, Cambridge
    6.Alleyne DN, Cawley P (1992) The interaction of Lamb waves with defects. IEEE Trans Ultrason Ferroelectr Freq Control 39(3):381鈥?97. doi:10.鈥?109/鈥?8.鈥?43172 View Article
    7.Rizzo P, Lanza di Scalea F (2007) Wavelet-based unsupervised and supervised learning algorithms for ultrasonic structural monitoring of waveguides. In: Reece PL (ed) Progress in smart materials and structures research, Chap 8. NOVA publishers, pp 227鈥?90. ISBN: 1-60021-106-2
    8.Giurgiutiu V (2005) Tuned lamb wave excitation and detection with piezoelectric wafer active sensors for structural health monitoring. J Int Mater Syst Struct 16(4):291鈥?05. doi:10.鈥?177/鈥?045389X05050106鈥?/span> View Article
    9.Rizzo P, Lanza di Scalea F (2005) Ultrasonic inspection of multi-wire steel strands with the aid of the wavelet transform. Smart Mater Struct 14(4):685鈥?95. doi:10.鈥?088/鈥?964-1726/鈥?4/鈥?/鈥?27 View Article
    10.Su Z, Ye L, Lu Y (2006) Guided Lamb waves for identification of damage in composite structures: a review. J Sound Vibrat 295(3):753鈥?80. doi:10.鈥?016/鈥媕.鈥媕sv.鈥?006.鈥?1.鈥?20 View Article
    11.Raghavan A, Cesnik CES (2007) Review of guided-wave structural health monitoring. Shock Vibrat Digest 39(2):91鈥?14. doi:10.鈥?177/鈥?583102406075428鈥?/span> View Article
    12.Park G, Sohn H, Farrar CR, Inman DJ (2003) Overview of piezoelectric impedance-based health monitoring and path forward. Shock Vibrat Digest 35(6):451鈥?63View Article
    13.Peairs DM, Park G, Inman DJ (2004) Improving accessibility of the impedance-based structural health monitoring method. J Int Mater Syst Struct 15(2):129鈥?39. doi:10.鈥?177/鈥?045389X04039914鈥?/span> View Article
    14.Bhalla S, Soh CK (2012) Electro-mechanical impedance technique. Smart materials in structural health monitoring, control and biomechanics. Springer, Berlin, pp 17鈥?1View Article
    15.Castaings M (1996) The generation, propagation, and detection of Lamb waves in plates using air-coupled ultrasonic transducers. J Acoust Soc Am 100(5):3070鈥?077. doi:10.鈥?121/鈥?.鈥?17193 View Article
    16.Scudder LP, Hutchins DA, Guo NGN (1996) Laser-generated ultrasonic guided waves in fiber-reinforced plates-theory and experiment. IEEE Trans Ultrason Ferroelectr Freq Control 43(5):870鈥?80. doi:10.鈥?109/鈥?8.鈥?35489 View Article
    17.Achenbach JD (2000) Quantitative nondestructive evaluation. Int J Solids Struct 37(1鈥?):13鈥?7. doi:10.鈥?016/鈥婼0020-7683(99)00074-8 MATH MathSciNet View Article
    18.Laguerre L, Aime JC, Brissaud M (2002) Magnetostrictive pulse-echo device for non-destructive evaluation of cylindrical steel materials using longitudinal guided waves. Ultrasonics 39(7):503鈥?14. doi:10.鈥?016/鈥婼0041-624X(01)00088-9 View Article
    19.Sale M, Rizzo P, Marzani A (2011) Semi-analytical formulation for the guided waves-based reconstruction of elastic moduli. Mech Sys Signal Process 25(6):2241鈥?256View Article
    20.Rizzo P, Han J, Ni X (2012) Structural health monitoring of immersed structures by means of guided ultrasonic waves. J Int Mater Syst Struct 21(14):1397鈥?407. doi:10.鈥?177/鈥?045389X10384170鈥?/span> View Article
    21.Giurgiutiu V, Bao J, Zhao W (2003) Piezoelectric wafer active sensor embedded ultrasonics in beams and plates. Exp Mech 43(4):428鈥?49. doi:10.鈥?007/鈥婤F02411348 View Article
    22.Zhu XQ, Hao H, Fan QK (2013) Detection of delamination between steel bars and concrete using embedded piezoelectric actuators/sensors. J Civil Struct Health Monit 3(2):105鈥?15View Article
    23.Zhu X, Rizzo P (2014) Sensors array for the health monitoring of truss structures by means of guided ultrasonic waves. J Civ Struct Health Monit 4(3):221鈥?34. doi:10.鈥?007/鈥媠13349-014-0078-3 View Article
    24.Giurgiutiu V, Santoni-Bottai G (2011) Structural health monitoring of composite structures with piezoelectric-wafer active sensors. AIAA J 49(3):565鈥?81View Article
    25.Zhu X, Rizzo P (2012) A unified approach for the structural health monitoring of waveguides. Struct Health Monit 11(6):629鈥?42. doi:10.鈥?177/鈥?475921712438569鈥?/span> View Article
    26.Wang Q, Wang CM (2000) Optimal placement and size of piezoelectric patches on beams from the controllability perspective. Smart Mater Struct 9(4):558鈥?67. doi:10.鈥?088/鈥?964-1726/鈥?/鈥?/鈥?20 View Article
    27.Baptista FG, Filho JV, Inman DJ (2011) Sizing PZT transducers in impedance-based structural health monitoring. IEEE Sens J 11(6):1405鈥?414. doi:10.鈥?109/鈥婮SEN.鈥?010.鈥?098865 View Article
    28.Bhalla S, Soh CK (2004) Electromechanical impedance modeling for adhesively bonded piezo-transducers. J Int Mater Syst Struct 15(12):955鈥?72. doi:10.鈥?177/鈥?045389X04046309鈥?/span> View Article
    29.Park G, Inman DJ (2007) Structural health monitoring using piezoelectric impedance measurements. Philos Trans Ser A Math Phys Eng Sci 365(1851):373鈥?92. doi:10.鈥?098/鈥媟sta.鈥?006.鈥?934 View Article
    30.Koo KY, Park S, Lee JJ, Yun CB (2009) Automated impedance-based structural health monitoring incorporating effective frequency shift for compensating temperature effects. J Int Mater Syst Struct 20(4):367鈥?77. doi:10.鈥?177/鈥?045389X08088664鈥?/span> View Article
    31.Li Y, Jiang Z, Chonan S, Feng G, Wen B (1998) Impedance-based technique and wave propagation measurement for non-destructive evaluation. In: Proceedings of international conference on vibration engineering, Dalian, China, pp 476鈥?81
    32.Kabeya K, Jiang Z, Cudney HH (1998) Structural health monitoring by impedance and wave propagation measurement. In: Proceedings of international motion and vibration control, ETH Zurich, Switzerland
    33.Jiang Z, Kabeya K, Chonan S (1999) Longitudinal wave propagation measuring technique for structural health monitoring. In: Symposium on Smart Structures and Materials, Newport Beach, CA, pp 343鈥?50
    34.Giurgiutiu V, Zagrai A, Jing Bao J (2002) Piezoelectric wafer embedded active sensors for aging aircraft structural health monitoring. Struct Health Monit 1(1):41鈥?1. doi:10.鈥?177/鈥?475921702001001鈥?4 View Article
    35.Park S, Lee JJ, Yun CB, Inman DJ (2007) A built-in active sensing system-based structural health monitoring technique using statistical pattern recognition. J Mech Sci Technol 21(6):896鈥?02. doi:10.鈥?007/鈥婤F03027065 View Article
    36.Park S, Inman DJ, Lee JJ, Yun CB (2008) Piezoelectric sensor-based health monitoring of railroad tracks using a two-step support vector machine classifier. J Infrastruct Syst 14(1):80鈥?8. doi:10.鈥?061/鈥?ASCE)1076-0342(2008)14:鈥?(80) View Article
    37.Zagrai A, Doyle D, Gigineishvili V, Brown J, Gardenier H, Arritt B (2010) Piezoelectric wafer active sensor structural health monitoring of space structures. J Int Mater Syst Struct 21(9):921鈥?40. doi:10.鈥?177/鈥?045389X10369850鈥?/span> View Article
    38.An YK, Sohn H (2011) Integrated impedance and guided wave based damage detection under temperature variation. In: SPIE Smart Structures and Materials聽+聽Nondestructive Evaluation and Health Monitoring, San Diego, CA, pp 79811Q鈥?9811Q
    39.Cuc A, Giurgiutiu V, Joshi S, Tidwell Z (2007) Structural health monitoring with piezoelectric wafer active sensors for space applications. AIAA J 45(12):2838鈥?850View Article
    40.Sharif Khodaei Z, Ghajari M, Aliabadi MH, Apicella A (2013) SMART platform for structural health monitoring of sensorised stiffened composite panels. Key Eng Mater 525:581鈥?84
    41.Yang M, Qiao P (2005) Modeling and experimental detection of damage in various materials using the pulse-echo method and piezoelectric sensors/actuators. Smart Mater Struct 14(6):1083鈥?100. doi:10.鈥?088/鈥?964-1726/鈥?4/鈥?/鈥?01 View Article
    42.Raghavan A, Cesnik CES (2007) Guided-wave signal processing using chirplet matching pursuits and mode correlation for structural health monitoring. Smart Mater Struct 16(2):355鈥?66. doi:10.鈥?088/鈥?964-1726/鈥?6/鈥?/鈥?14 View Article
    43.Shen Y, Giurgiutiu V (2014) WaveFormRevealer: an analytical framework and predictive tool for the simulation of multi-modal guided wave propagation and interaction with damage. Struct Health Monit 13(3):1鈥?1. doi:10.鈥?177/鈥?475921714532986鈥?/span>
    44.An YK, Sohn H (2012) Integrated impedance and guided wave based damage detection. Mech Syst Signal Proc 28:50鈥?2. doi:10.鈥?016/鈥媕.鈥媦mssp.鈥?011.鈥?1.鈥?16 View Article
    45.An YK, Kim MK, Sohn H (2012) Airplane hot spot monitoring using integrated impedance and guided wave measurements. Struct Control Health Monit 19(7):592鈥?04. doi:10.鈥?002/鈥媠tc.鈥?493 View Article
    46.Park HJ, Sohn H, Yun CB, Chung J, Lee MM (2012) Wireless guided wave and impedance measurement using laser and piezoelectric transducers. Smart Mater Struct 21(3):035029. doi:10.鈥?088/鈥?964-1726/鈥?1/鈥?/鈥?35029 View Article
    47.Providakis CP, Stefanaki KD, Voutetaki ME Tsompanakis Y, Stavroulaki M (2013) Damage detection in concrete structures using a simultaneously activated multi-mode PZT active sensing system: numerical modelling. Struct Infrastruct Eng, 1鈥?8. Doi: 10.鈥?080/鈥?5732479.鈥?013.鈥?31908
    48.Moll J, Fritzen C (2010) Advanced aspects of mode-selective excitation of ultrasonic guided waves. In: 24th Conference on Noise and Vibration Engineering, Leuven, Belgium, pp 969鈥?84
    49.Shelke A, Kundu T, Amjad U, Hahn K, Grill W (2011) Mode-selective excitation and detection of ultrasonic guided waves for delamination detection in laminated aluminum plates. IEEE Trans Ultrason Ferroelectr Freq Control 58(3):567鈥?77. doi:10.鈥?109/鈥婽UFFC.鈥?011.鈥?839 View Article
    50.Quaegebeur N, Masson P, Micheau P, Mrad N (2012) Broadband generation of ultrasonic guided waves using piezoceramics and sub-band decomposition. IEEE Trans Ultrason Ferroelectr Freq Control 59(5):928鈥?38. doi:10.鈥?109/鈥婽UFFC.鈥?012.鈥?277 View Article
    51.Michaels JE, Lee SJ, Hall JS, Michaels TE (2011) Multi-mode and multi-frequency guided wave imaging via chirp excitations. In: Proceeding of SPIE Conference on Health Monitoring of Structural and Biological Systems, San Diego, CA, pp 79840I鈥?9840I
    52.Michaels TE, Michaels JE, Lee SJ, Chen X (2011) Chirp generated acoustic wavefield images. In: SPIE Smart Structures and Materials聽+聽Nondestructive Evaluation and Health Monitoring, San Diego, CA, pp 79840J鈥?9840J
    53.Michaels JE, Lee SJ, Croxford AJ, Wilcox PD (2013) Chirp excitation of ultrasonic guided waves. Ultrasonics 53(1):265鈥?70. doi:10.鈥?016/鈥媕.鈥媢ltras.鈥?012.鈥?6.鈥?10 View Article
    54.Zeng L, Lin J (2014) Chirp-based dispersion pre-compensation for high resolution Lamb wave inspection. NDT&E Int 61:35鈥?4. doi:10.鈥?016/鈥媕.鈥媙dteint.鈥?013.鈥?9.鈥?08 View Article
    55.Xu B, Giurgiutiu V (2005) A low-cost and field portable electromechanical (E/M) impedance analyzer for active structural health monitoring. In: Paper presented at 5th International Work Structural Health Monitoring, Stanford University, Stanford, CA, 15鈥?7 Sept 2005
    56.Baptista FG, Filho JV (2009) A new impedance measurement system for PZT-based structural health monitoring. IEEE Trans Instrum Meas 58(10):3602鈥?608. doi:10.鈥?109/鈥婽IM.鈥?009.鈥?018693 View Article
    57.Liang C, Sun FP, Rogers CA (1994) An impedance method for dynamic analysis of active material systems. J Vib Acoust 116(1):120鈥?28. doi:10.鈥?115/鈥?.鈥?930387 View Article
    58.Zhou S, Liang C, Rogers CA (1995) Integration and design of piezoceramic elements in intelligent structures. J Int Mater Syst Struct 6(6):733鈥?43. doi:10.鈥?177/鈥?045389X95006006鈥?1 View Article
    59.Annamdas VGM, Soh CK (2007) Three-dimensional electromechanical impedance model I: formulation of directional sum impedance. J Aerosp Eng 20(1):53鈥?2. doi:10.鈥?061/鈥?ASCE)0893-1321(2007)20:鈥?(53) View Article
    60.Yu L, Giurgiutiu V (2005) Advanced signal processing for enhanced damage detection with piezoelectric wafer active sensors. Smart Struct Syst 1(2):185鈥?15View Article
    61.Attarian V, Cegla F, Cawley P (2014) Long-term stability of guided wave structural health monitoring using distributed adhesively bonded piezoelectric transducers. Struct Health Monit 13:265鈥?80. doi:10.鈥?177/鈥?475921714522842鈥?/span> View Article
    62.Baptista F, Budoya D, Almeida V, Ulson J (2014) An experimental study on the effect of temperature on piezoelectric sensors for impedance-based structural health monitoring. Sensors 14(1):1208鈥?227. doi:10.鈥?390/鈥媠140101208 View Article
    63.Park G, Kabeya K, Cudney HH, Inman DJ (1992) Impedance-based structural health monitoring for temperature varying applications. JSME Int J Ser A 42(2):249鈥?58View Article
    64.Giurgiutiu V, Reynolds A, Rogers CA (1999) Experimental investigation of E/M impedance health monitoring for spot-welded structural joints. J Int Mater Syst Struct 10(10):802鈥?12. doi:10.鈥?106/鈥婲0J5-6UJ2-W1GV-Q8MC View Article
    65.Li YK (1967) Probabilistic theory of structural dynamics. McGraw-Hill, New York
  • 作者单位:Vincenzo Gulizzi (1)
    Piervincenzo Rizzo (2)
    Alberto Milazzo (1)
    Emma La Malfa Ribolla (1)

    1. Department of Civil, Environmental, Aerospace, and Materials Engineering, University of Palermo, Viale delle Scienze, Ed. 8, 90128, Palermo, Italy
    2. Laboratory for Nondestructive Evaluation and Structural Health Monitoring Studies, Department of Civil and Environmental Engineering, University of Pittsburgh, 3700 O鈥橦ara Street, Pittsburgh, PA, 15261, USA
  • 刊物主题:Civil Engineering; Measurement Science and Instrumentation; Vibration, Dynamical Systems, Control;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:2190-5479
文摘
We propose a structural health monitoring (SHM) paradigm based on the simultaneous use of ultrasounds and electromechanical impedance (EMI) to monitor waveguides. Methods based on the propagation of guided ultrasonic waves (GUWs) are increasingly used in all those SHM applications that benefit from built-in transduction, moderately large inspection ranges, and high sensitivity to small flaws. Meantime, impedance-based SHM promises to adequately assess locally the structural integrity of simple waveguides and complex structures such as bolted connections. As both methods utilize piezoelectric transducers bonded or embedded to the structure of interest, this paper describes a unified SHM paradigm where pulse-echo and pitch-catch GUWs as well as EMI are employed simultaneously and are driven by the same sensing/hardware/software. We assess the feasibility of this unified system by monitoring a large flat aluminum plate with two transducers. Damage is simulated by adding small masses to the plate. The results demonstrate that the proposed system is robust and can be developed further to address the challenges associated with the SHM of complex structures.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700