用户名: 密码: 验证码:
Experimental demonstrations of high-Q superconducting coplanar waveguide resonators
详细信息    查看全文
  • 作者:HaiJie Li (15882)
    YiWen Wang (15882)
    LianFu Wei (15882) (25882)
    PinJia Zhou (15882)
    Qiang Wei (15882)
    ChunHai Cao (35882)
    YuRong Fang (35882)
    Yang Yu (35882)
    PeiHeng Wu (35882)
  • 关键词:superconducting coplanar waveguide resonator ; resonance frequency ; quality factor
  • 刊名:Chinese Science Bulletin
  • 出版年:2013
  • 出版时间:July 2013
  • 年:2013
  • 卷:58
  • 期:20
  • 页码:2413-2417
  • 全文大小:764KB
  • 参考文献:1. Day P K, LeDuc H G, Mazin B A, et al. A broadband supercon-ducting detector suitable for use in large arrays. Nature, 2003, 425: 817-21 CrossRef
    2. Mazin B A, Bumble B, Day P K, et al. Position sensitive X-ray spectrophotometer using microwave kinetic inductance detectors. Appl Phys Lett, 2006, 89: 222507 CrossRef
    3. Day P K, Leduc H G, Goldin A, et al. Antenna-coupled Microwave kinetic inductance detectors. Phys Rev A, 2006, 559: 561-63
    4. Tholén E A, Ergül A, Doherty E M, et al. Nonlinearities and parametric amplification in superconducting coplanar waveguide resonators. Appl Phys Lett, 2007, 90: 253509 CrossRef
    5. Wallraff A, Schuster D I, Blais A, et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature, 2004, 431: 162-67 CrossRef
    6. Yu L B, Tong N H, Xue Z Y, et al. Simulation of the spin-boson model with superconducting phase qubit coupled to a transmission line. Sci China Phys Mech Astron, 2012, 55: 1557-561 CrossRef
    7. Amsüss R, Koller C, N?bauer T, et al. Cavity QED with magnetically coupled collective spin states. Phys Rev Lett, 2011, 107: 060502 CrossRef
    8. Zhou Z W, Chen W, Sun F W, et al. A survey on quantum information technology. Chin Sci Bull, 2012, 57: 1498-525 CrossRef
    9. Qian, Y, Zhang Y Q, Xu J B. Amplifying stationary quantum discord and entanglement between a superconducting qubit and a data bus by time-dependent electromagnetic field. Chin Sci Bull, 2012, 57: 1637-642 CrossRef
    10. Kubo Y, Diniz I, Grezes C, et al. Electron spin resonance detected by a superconducting qubit. Phys Rev B, 2012, 86: 064514 CrossRef
    11. Irwin K, Hilton G, Wollman D, et al. X-ray detection using a super-conducting transitionedge sensor microcalorimeter with electrothermal feedback. Appl Phys Lett, 1996, 69: 1945-947 CrossRef
    12. Chervenak J, Irwin K, Grossman E, et al. Superconducting multiplexer for arrays of transition edge sensors. Appl Phys Lett, 1999, 74: 4043-045 CrossRef
    13. Peacock A, Verhoeve P, Rando N, et al. Single optical photon detectionwith a superconducting tunnel junction. Nature, 1996, 381: 135-37 CrossRef
    14. Shen D D, Zhu R, Xu W W, et al. Character and fabrication of Al/ Al2O3/Al tunnel junctions for qubit application. Chin Sci Bull, 2012, 57: 409-12 CrossRef
    15. You L X, Shen X F, Yang X Y, et al. Single photon response of superconducting nanowire single photon detector. Chin Sci Bull, 2010, 55: 441-45 CrossRef
    16. Tinkham M, Emery V. Introduction to Superconductivity. 2nd ed. New York: Dover Publications, 1996
    17. Jiang Y, Liang M, Jin B B, et al. A simple Fourier transform spectrometer for terahertz applications. Chin Sci Bull, 2012, 57: 573-78 CrossRef
    18. Gao L, Guo J, Wang Y H, et al. A 23 GHz high-temperature superconducting microstrip filter for radio astronomy. Chin Sci Bull, 2009, 54: 3485-488 CrossRef
    19. Mazin B A. Microwave kinetic inductance detectors. PhD Thesis. California: California Institute of Technology Pasadena, 2004
    20. Wadell B C. Transmission Line Design Handbook. Norwood, MA: Artech House Publishers, 1991
    21. De Visser P J, Withington S, Goldie D J. Readout-power heating and hysteretic switching between thermal quasiparticle states in kinetic inductance detectors. J Appl Phys, 2010, 108: 114504 CrossRef
    22. Gao J, Daal M, Martinis J M, et al. A semiempirical model for two-level system noise in superconducting microresonators. Appl Phys Lett, 2008, 21: 212504 CrossRef
    23. Wisbey D S, Gao J, Vissers M R, et al. Effect of metal/substrate interfaces on radio-frequency loss in superconducting coplanar waveguides. J Appl Phys, 2010, 108: 093918 CrossRef
  • 作者单位:HaiJie Li (15882)
    YiWen Wang (15882)
    LianFu Wei (15882) (25882)
    PinJia Zhou (15882)
    Qiang Wei (15882)
    ChunHai Cao (35882)
    YuRong Fang (35882)
    Yang Yu (35882)
    PeiHeng Wu (35882)

    15882. Quantum Optoelectronics Laboratory, Southwest Jiaotong University, Chengdu, 610031, China
    25882. State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
    35882. Research Institute of Superconductor Electronics, Nanjing University, Nanjing, 210093, China
  • ISSN:1861-9541
文摘
We successfully designed and fabricated an absorption-type of superconducting coplanar waveguide (CPW) resonators. The resonators are made from a niobium film (about 160 nm thick) on a high-resistance Si substrate, and each resonator is fabricated as a meandered quarter-wavelength transmission line (one end is short to the ground and another end is capacitively coupled to a through feedline). With a vector network analyzer we measured the transmissions of the applied microwave through the resonators at ultra-low temperature. The obtained loaded quality factors are significantly high, i.e. up to ?06. When the temperature increases slowly from the base temperature (20 mK), the resonance frequencies of the resonators are blue shifted and the quality factors are lowered slightly. In principle, this type of device can integrate a series of CPW resonators with a common feedline, making it a promising candidate as the data bus for coupling distant solid-state qubits and the sensitive detector of single photons.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700