用户名: 密码: 验证码:
Deviating from the nanorod shape: Shape-dependent plasmonic properties of silver nanorice and nanocarrot structures
详细信息    查看全文
  • 作者:Hong-Yan Liang ; Hong Wei ; Hong-Xing Xu
  • 关键词:electron energy loss spectroscopy (EELS) ; localized surface plasmon resonance (LSPR) ; multipolar longitudinal plasmon mode ; nanocarrot ; nanorice ; plasmonic sensing
  • 刊名:Frontiers of Physics
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:11
  • 期:2
  • 全文大小:840 KB
  • 参考文献:1.W. A. Murray and W. L. Barnes, Plasmonic materials, Adv. Mater. 19(22), 3771 (2007)CrossRef
    2.H. Wei and H. X. Xu, Plasmonics in composite nanostructures, Mater. Today 17(8), 372 (2014)CrossRef
    3.L. M. Tong, H. Wei, S. P. Zhang, Z. P. Li, and H. X. Xu, Optical properties of single coupled plasmonic nanoparticles, Phys. Chem. Chem. Phys. 15(12), 4100 (2013)CrossRef
    4.L. M. Tong and H. X. Xu, Frontiers of plasmonics, Front. Phys. 9(1), 1 (2014)CrossRef ADS
    5.O. Stranik, J. Jatschka, A. Csakiand, and W. Fritzsche, Development of new classes of plasmon active nano-structures and their application in bio-sensing and energy guiding, Front. Phys. 9(5), 652 (2014)CrossRef
    6.K. M. Mayer and J. H. Hafner, Localized surface plasmon resonance sensors, Chem. Rev. 111(6), 3828 (2011)CrossRef
    7.H. X. Xu, E. J. Bjerneld, M. Kall, and L. Borjesson, Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering, Phys. Rev. Lett. 83(21), 4357 (1999)CrossRef ADS
    8.H. X. Xu, J. Aizpurua, M. Kall, and P. Apell, Electromagnetic contributions to single-molecule sensitivity in surfaceenhanced Raman scattering, Phys. Rev. E 62, 4318 (2000)CrossRef ADS
    9.H. Y. Liang, Z. P. Li, W. Z. Wang, Y. S. Wu, and H. X. Xu, Highly surface-roughened “flower-like” silver nanoparticles for extremely sensitive substrates of surface-enhanced Raman scattering, Adv. Mater. 21(45), 4614 (2009)CrossRef
    10.H. Y. Liang, Z. P. Li, Z. X. Wang, W. Z. Wang, F. Rosei, D. L. Ma, and H. X. Xu, Enormous surface-enhanced Raman scattering from dimers of flower-like silver mesoparticles, Small 8(22), 3400 (2012)CrossRef
    11.H. X. Xu, Theoretical study of coated spherical metallic nanoparticles for single-molecule surface-enhanced spectroscopy, Appl. Phys. Lett. 85(24), 5980 (2004)CrossRef ADS
    12.H. Wei and H. X. Xu, Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy, Nanoscale 5(22), 10794 (2013)CrossRef ADS
    13.A. M. Michaels, J. Jiang, and L. Brus, Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single Rhodamine 6G molecules, J. Phys. Chem. B 104(50), 11965 (2000)CrossRef
    14.M. Moskovits, Surface-enhanced Raman spectroscopy: A brief retrospective, J. Raman Spectrosc. 36(6–7), 485 (2005)CrossRef ADS
    15.J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, Shell-isolated nanoparticle-enhanced Raman spectroscopy, Nature 464(7287), 392 (2010)CrossRef ADS
    16.F. Z. Cong, H. Wei, X. R. Tian, and H. X. Xu, A facile synthesis of branched silver nanowire structures and its applications in surface-enhanced Raman scattering, Front. Phys. 7(5), 521 (2012)CrossRef
    17.Z. H. Kim, Single-molecule surface-enhanced Raman scattering: Current status and future perspective, Front. Phys. 9(1), 25 (2014)CrossRef
    18.Y. S. Yamamoto, M. Ishikawa, Y. Ozaki, and T. Itoh, Fundamental studies on enhancement and blinking mechanism of surface-enhanced Raman scattering (SERS) and basic applications of SERS biological sensing, Front. Phys. 9(1), 31 (2014)CrossRef
    19.L. M. Tong, H. Wei, S. P. Zhang, and H. X. Xu, Recent advances in plasmonic sensors, Sensors 14(5), 7959 (2014)CrossRef
    20.H. X. Xu and M. Kall, Modeling the optical response of nanoparticle-based surface plasmon resonance sensors, Sens. Actuators B Chem. 87(2), 244 (2002)CrossRef
    21.H. X. Xu and M. Käll, Surface-plasmon-enhanced optical forces in silver nanoaggregates, Phys. Rev. Lett. 89(24), 246802 (2002)CrossRef ADS
    22.F. Svedberg, Z. P. Li, H. X. Xu, and M. Käll, Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation, Nano Lett. 6(12), 2639 (2006)CrossRef ADS
    23.M. L. Juan, M. Righini, and R. Quidant, Plasmon nanooptical tweezers, Nat. Photonics 5(6), 349 (2011)CrossRef ADS
    24.T. Shegai, Z. P. Li, T. Dadosh, Z. Y. Zhang, H. X. Xu, and G. Haran, Managing light polarization via plasmon-molecule interactions within an asymmetric metal nanoparticle trimer, Proc. Natl. Acad. Sci. USA 105(43), 16448 (2008)CrossRef ADS
    25.V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters, Chem. Rev. 111(6), 3888 (2011)CrossRef
    26.Z. P. Li, T. Shegai, G. Haran, and H. X. Xu, Multipleparticle nanoantennas for enormous enhancement and polarization control of light emission, ACS Nano 3(3), 637 (2009)CrossRef
    27.B. S. Guiton, V. Iberi, S. Li, D. N. Leonard, C. M. Parish, P. G. Kotula, M. Varela, G. C. Schatz, S. J. Pennycook, and J. P. Camden, Correlated optical measurements and plasmon mapping of silver nanorods, Nano Lett. 11(8), 3482 (2011)CrossRef
    28.A. L. Schmucker, N. Harris, M. J. Banholzer, M. G. Blaber, K. D. Osberg, G. C. Schatz, and C. A. Mirkin, Correlating nanorod structure with experimentally measured and theoretically predicted surface plasmon resonance, ACS Nano 4(9), 5453 (2010)CrossRef
    29.S. P. Zhang, L. Chen, Y. Z. Huang, and H. X. Xu, Reduced linewidth multipolar plasmon resonances in metal nanorods and related applications, Nanoscale 5(15), 6985 (2013)CrossRef ADS
    30.S. Link and M. A. El-Sayed, Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods, J. Phys. Chem. B 103(40), 8410 (1999)CrossRef
    31.L. Vigderman, B. P. Khanal, and E. R. Zubarev, Functional gold nanorods: Synthesis, self-assembly, and sensing applications., Adv. Mater. 24(36), 4811, 5014 (2012)CrossRef
    32.J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. G. de Abajo, B. K. Kelley, and T. Mallouk, Optical properties of coupled metallic nanorods for field-enhanced spectroscopy, Phys. Rev. B 71(23), 235420 (2005)CrossRef ADS
    33.M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, The “lightning” gold nanorods: Fluorescence enhancement of over a million compared to the gold metal, Chem. Phys. Lett. 317(6), 517 (2000)CrossRef ADS
    34.G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, Mapping the plasmon resonances of metallic nanoantennas, Nano Lett. 8(2), 631 (2008)CrossRef ADS
    35.H. Y. Liang, W. Z. Wang, Y. Z. Huang, S. P. Zhang, H. Wei, and H. X. Xu, Controlled synthesis of uniform silver nanospheres, J. Phys. Chem. C 114(16), 7427 (2010)CrossRef
    36.D. Rossouw and G. A. Botton, Resonant optical excitations in complementary plasmonic nanostructures, Opt. Express 20(7), 6968 (2012)CrossRef ADS
    37.A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, Plasmonic nanorod metamaterials for biosensing, Nat. Mater. 8(11), 867 (2009)CrossRef ADS
    38.P. Zijlstra, P. M. R. Paulo, and M. Orrit, Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod, Nat. Nanotechnol. 7(6), 379 (2012)CrossRef ADS
    39.H. Y. Liang, H. X. Yang, W. Z. Wang, J. Q. Li, and H. X. Xu, High-yield uniform synthesis and microstructuredetermination of rice-shaped silver nanocrystals, J. Am. Chem. Soc. 131(17), 6068 (2009)CrossRef
    40.H. Y. Liang, D. Rossouw, H. G. Zhao, S. K. Cushing, H. L. Shi, A. Korinek, H. X. Xu, F. Rosei, W. Z. Wang, N. Q. Wu, G. A. Botton, and D. L. Ma, Asymmetric silver “nanocarrot” structures: Solution synthesis and their asymmetric plasmonic resonances, J. Am. Chem. Soc. 135(26), 9616 (2013)CrossRef
    41.H. Y. Liang, H. G. Zhao, D. Rossouw, W. Z. Wang, H. X. Xu, G. A. Botton, and D. L. Ma, Silver nanorice structures: Oriented attachment-dominated growth, high environmental sensitivity, and real-space visualization of multipolar resonances, Chem. Mater. 24(12), 2339 (2012)CrossRef
    42.H. Wei, A. Reyes-Coronado, P. Nordlander, J. Aizpurua, and H. X. Xu, Multipolar plasmon resonances in individual Ag nanorice, ACS Nano 4(5), 2649 (2010)CrossRef
    43.X. Tong, H. Y. Liang, Y. L. Liu, L. Tan, D. L. Ma, and Y. Zhao, Anisotropic optical properties of oriented silver nanorice and nanocarrots in stretched polymer films, Nanoscale 7(19), 8858 (2015)CrossRef ADS
    44.F. López-Tejeira, R. Paniagua-Domínguez, and J. A. Sánchez-Gil, High-performance nanosensors based on plasmonic Fano-like interference: Probing refractive index with individual nanorice and nanobelts, ACS Nano 6(10), 8989 (2012)CrossRef
    45.J. S. Sekhon and S. S. Verma, Refractive index sensitivity analysis of Ag, Au, and Cu nanoparticles, Plasmonics 6(2), 311 (2011)CrossRef
    46.X. R. Tian, Y. R. Fang, and B. L. Zhang, Multipolar Fano resonances and Fano-assisted optical activity in silver nanorice heterodimers, ACS Photonics 1(11), 1156 (2014)CrossRef
    47.L. Chen, H. Wei, K. Q. Chen, and H. X. Xu, High-order plasmon resonances in an Ag/Al2O3 core/shell nanorice, Chin. Phys. B 23(2), 027303 (2014)CrossRef ADS
    48.S. Shanmukh, L. Jones, J. Driskell, Y. P. Zhao, R. Dluhy, and R. A. Tripp, Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate, Nano Lett. 6(11), 2630 (2006)CrossRef ADS
    49.M. Li, S. K. Cushing, H. Y. Liang, S. Suri, D. L. Ma, and N. Q. Wu, Plasmonic nanorice antenna on triangle nanoarray for surface-enhanced Raman scattering detection of hepatitis B virus DNA, Anal. Chem. 85(4), 2072 (2013)CrossRef
  • 作者单位:Hong-Yan Liang (1)
    Hong Wei (2)
    Hong-Xing Xu (1)

    1. Center for Nanoscience and Nanotechnology, School of Physics and Technology, and Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
    2. Institute of Physics, Chinese Academy of Sciences, and Beijing National Laboratory for Condensed Matter Physics, Beijing, 100190, China
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Chinese Library of Science
  • 出版者:Higher Education Press, co-published with Springer-Verlag GmbH
  • ISSN:2095-0470
文摘
Noble metallic nanostructures exhibit special optical properties resulting from excitation of surface plasmons. Among the various metallic nanostructures, nanorods have attracted particular attention because of their unique and intriguing shape-dependent plasmonic properties. Nanorods can support transverse and longitudinal plasmon modes, the latter ones depending strongly on the aspect ratio of the nanorod. These modes can be routinely tuned from the visible to the near-infrared spectral regions. Although nanorods have been investigated extensively, there are few studies devoted to nanostructures deviating from the nanorod shape. This review provides an overview of recent progress in the development of two kinds of novel quasi-one-dimensional silver nanostructures, nanorice and nanocarrot, including their syntheses, crystalline characterizations, plasmonic property analyses, and performance in plasmonic sensing applications. Keywords electron energy loss spectroscopy (EELS) localized surface plasmon resonance (LSPR) multipolar longitudinal plasmon mode nanocarrot nanorice plasmonic sensing

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700