用户名: 密码: 验证码:
Vanadium removal and recovery from bauxite residue leachates by ion exchange
详细信息    查看全文
  • 作者:Helena I. Gomes ; Ashley Jones ; Mike Rogerson…
  • 关键词:Red mud ; Metal recovery ; Alkaline drainage ; Recycling ; Sorption ; Anion exchange resin
  • 刊名:Environmental Science and Pollution Research
  • 出版年:2016
  • 出版时间:November 2016
  • 年:2016
  • 卷:23
  • 期:22
  • 页码:23034-23042
  • 全文大小:773 KB
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Environment
    Atmospheric Protection, Air Quality Control and Air Pollution
    Waste Water Technology, Water Pollution Control, Water Management and Aquatic Pollution
    Industrial Pollution Prevention
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1614-7499
  • 卷排序:23
文摘
Bauxite residue is an important by-product of the alumina industry, and current management practices do not allow their full valorisation, especially with regard to the recovery of critical metals. This work aims to test the efficiency of ion exchange resins for vanadium (V) removal and recovery from bauxite residue leachates at alkaline pH (11.5 and 13). As an environmental pollutant, removal of V from leachates may be an obligation of bauxite residue disposal areas (BRDA) long-term management requirements. Vanadium removal from the leachate can be coupled with the recovery, and potentially can be used to offset long-term legacy treatment costs in legacy sites. Kinetics studies were performed to understand the adsorption process. The rate kinetics for the V adsorption was consistent with the pseudo-first-order kinetic model, with a higher adsorption rate for pH 11.5 (1.2 min−1). Adsorption isotherm data fitted better to Freundlich equations than to the Langmuir model. The maximum adsorption capacity (Langmuir value qmax) was greatest for pH 13 (9.8 mg V g−1 resin). In column tests, breakthrough was reached at 70 bed volumes with the red mud leachate at pH 13, while no breakthrough was achieved with the effluent at pH 11.5. In regeneration, 42 and 76 % of V were eluted from the resin with 2 M NaOH from the red mud leachate at pH 13 and 11.5, respectively. Further optimization will be needed to upscale the treatment.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700