用户名: 密码: 验证码:
Tunable Friction Through Microwrinkle Formation on a Reinforced Rubber Surface
详细信息    查看全文
  • 作者:Kosuke Suzuki ; Yuji Hirai ; Masatsugu Shimomura ; Takuya Ohzono
  • 关键词:Shape ; tunable wrinkles ; Dry friction ; Elastomers ; Reinforced surface ; Friction control ; Stick–slip
  • 刊名:Tribology Letters
  • 出版年:2015
  • 出版时间:November 2015
  • 年:2015
  • 卷:60
  • 期:2
  • 全文大小:855 KB
  • 参考文献:1.Autumn, K., Liang, Y.A., Hsieh, S.T., Zesch, W., Chan, W.P., Kenny, T.W., Fearing, R., Full, R.J.: Adhesive force of a single gecko foot-hair. Nature 405, 681–685 (2000). doi:10.​1038/​35015073 CrossRef
    2.Beutel, R.G., Gorb, S.N.: Ultrastructure of attachment specializations of hexapods (Arthropoda): evolutionary patterns inferred from a revised ordinal phylogeny. J. Zool. Syst. Evol. Res. 39, 177–207 (2001). doi:10.​1046/​j.​1439-0469.​2001.​00155.​x CrossRef
    3.Federle, W., Barnes, W.J.P., Baumgartner, W., Drechsler, P., Smithm, J.M.: Wet but not slippery: boundary friction in tree frog adhesive toe pads. J. R. Soc. Interface 3, 689–697 (2006). doi:10.​1098/​rsif.​2006.​0135 CrossRef
    4.Nonomura, Y., Miura, T., Miyashita, T., Asao, Y., Shirado, H., Makino, Y., Maeno, T.: How to identify water from thickener aqueous solutions by touch. J. R. Soc. Interface 9, 1216–1223 (2012). doi:10.​1098/​rsif.​2011.​0577 CrossRef
    5.Bohn, H.F., Federle, W.: Insect aquaplaning: nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface. Proc. Natl. Acad. Sci. U. S. A. 101, 14138–14143 (2004). doi:10.​1073/​pnas.​0405885101 CrossRef
    6.Bowden, N., Brittain, S., Evans, A.G., Hutchinson, J.W., Whitesides, G.M.: Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 393, 146–149 (1998). doi:10.​1038/​30193 CrossRef
    7.Bowden, N., Huck, W.T.S., Paul, K.E., Whitesides, G.M.: The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer. Appl. Phys. Lett. 75, 2557–2559 (1999). doi:10.​1063/​1.​125076 CrossRef
    8.Ohzono, T., Shimomura, M.: Ordering of microwrinkle patterns by compressive strain. Phys. Rev. B 69, 132202 (2004). doi:10.​1103/​PhysRevB.​69.​132202 CrossRef
    9.Brau, F., Vandeparre, H., Sabbah, A., Poulard, C., Boudaoud, A., Damman, P.: Multiple-length-scale elastic instability mimics parametric resonance of nonlinear oscillators. Nat. Phys. 7, 56–60 (2011). doi:10.​1038/​nphys1806 CrossRef
    10.Ohzono, T., Suzuki, K., Yamaguchi, T., Fukuda, N.: Tunable optical diffuser based on deformable wrinkles. Adv. Opt. Mater. 1, 374–380 (2013). doi:10.​1002/​adom.​201300128 CrossRef
    11.Chen, Y.-C., Crosby, A.J.: High aspect ratio wrinkles via substrate prestretch. Adv. Mater. 26, 5626–5631 (2014). doi:10.​1002/​adma.​201401444 CrossRef
    12.Ohzono, T., Hirai, Y., Suzuki, K., Shimomura, M., Uchida, N.: Reinforced shape-tunable microwrinkles formed on a porous-film-embedded elastomer surface. Soft Matter 10, 7165–7169 (2014). doi:10.​1039/​c4sm00942h CrossRef
    13.Rand, C.J., Crosby, A.J.: Friction of soft elastomeric wrinkled surfaces. J. Appl. Phys. 106, 064913 (2009). doi:10.​1063/​1.​3226074 CrossRef
    14.Suzuki, K., Hirai, Y., Ohzono, T.: Oscillating friction on shape-tunable wrinkles. ACS Appl. Mater. Interfaces 6, 10121–10131 (2014). doi:10.​1021/​am5010738 CrossRef
    15.Widawski, G., Rawiso, M., Francois, B.: Self-organized honeycomb morphology of star-polymer polystyrene films. Nature 369, 387–389 (1994). doi:10.​1038/​369387a0 CrossRef
    16.Nishikawa, T., Ookura, R., Nishida, I., Arai, K., Hayashi, I., Kurono, N., Sawadaishi, T., Hara, M., Shimomura, M.: Fabrication of honeycomb film of an amphiphilic copolymer at the air–water interface. Langmuir 18, 5734–5740 (2002). doi:10.​1021/​la011451f CrossRef
    17.Yabu, H., Hirai, Y., Shimomura, M.: Electroless plating of honeycomb and pincushion polymer films prepared by self-organization. Langmuir 22, 9760–9764 (2006). doi:10.​1021/​la062228r CrossRef
    18.Hirai, Y., Yabu, H., Matsuo, Y., Ijiro, K., Shimomura, M.: Biomimetic bi-functional silicon nanospike-array structures prepared by using self-organized honeycomb templates and reactive ion etching. J. Mater. Chem. 20, 10804–10808 (2010). doi:10.​1039/​c0jm02423f CrossRef
    19.He, B., Chen, W., Wang, Q.J.: Surface texture effect on friction of a microtextured poly(dimethylsiloxane) (PDMS). Tribol. Lett. 31, 187–197 (2008). doi:10.​1007/​s11249-008-9351-0 CrossRef
    20.Schallamach, A.: How does rubber slide? Wear 17, 301–312 (1971). doi:10.​1016/​0043-1648(71)90033-0 CrossRef
    21.Koudine, A.A., Barquins, M.: Formation of micro-ridges on the surface of Schallamach waves propagating in area between a moving rubber sample and the contact glass lens. J. Adhesion Sci. Technol. 10, 951–961 (1996). doi:10.​1163/​156856196x00030 CrossRef
    22.Koudine, A.A., Barquins, M.: On the influence of rubber thickness on the existence of Schallamach waves. Int. J. Adhesive 17, 107–110 (1997). doi:10.​1016/​S0143-7496(96)00043-7 CrossRef
    23.Rand, C.J., Crosby, A.J.: Friction of soft elastomeric surfaces with a defect. Appl. Phys. Lett. 91, 261909 (2007). doi:10.​1063/​1.​2828136 CrossRef
    24.Momozono, S., Takeuchi, H., Iguchi, Y., Nakamura, K., Kyogoku, K.: Dissipation characteristics of adhesive kinetic friction on amorphous polymer surfaces. Tribol. Int. 48, 122–127 (2012). doi:10.​1016/​j.​triboint.​2011.​11.​016 CrossRef
    25.Schulze, K.D., Bennett, A.I., Rowe, K.G., Sawyer, W.G.: L’escargot rapide: soft contacts at high speeds. Tribol. Lett. 55, 65–68 (2014). doi:10.​1007/​s11249-014-0332-1 CrossRef
    26.Wandersman, E., Candelier, R., Debrégeas, G., Prevost, A.: Texture-induced modulations of friction force: the fingerprint effect. Phys. Rev. Lett. 107, 164301 (2011). doi:10.​1103/​physrevlett.​107.​164301 CrossRef
    27.Hertz, H.: On the contact of elastic solids. In: Jones, D.E., Schott, G.A. (eds.) Miscellaneous papers, pp. 146–162. Macmillan, London (1896)
    28.Johnson, K.L., Kendall, K., Roberts, A.D.: Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 324, 301–313 (1971). doi:10.​1098/​rspa.​1971.​0141 CrossRef
    29.Bowden, F.P., Tabor, D.: The friction and lubrication of solids. Clarendon Press, Oxford (1950)
    30.Kaelble, D.H.: Theory and analysis of peel adhesion: mechanisms and mechanics. Trans. Soc. Rheol. 6, 161–180 (1959). doi:10.​1122/​1.​548850 CrossRef
    31.Kendall, K.: Thin-film peeling—the elastic term. J. Phys. D Appl. Phys. 8, 1449–1452 (1975). doi:10.​1088/​0022-3727/​8/​13/​005 CrossRef
    32.Dalbe, M.-J., Santucci, S., Vanel, L., Cortet, P.-P.: Peeling-angle dependence of the stick–slip instability during adhesive tape peeling. Soft Matter 10, 9637–9643 (2014). doi:10.​1039/​c4sm01840k CrossRef
    33.Collino, R.R., Philips, N.R., Rossol, M.N., McMeeking, R.M., Begley, M.R.: Detachment of compliant films adhered to stiff substrates via van der Waals interactions: role of frictional sliding during peeling. J. R. Soc. Interface 11, 20140453 (2014). doi:10.​1098/​rsif.​2014.​0453 CrossRef
    34.Brörmann, K., Barel, I., Urbakh, M., Bennewitz, R.: Friction on a microstructured elastomer surface. Tribol. Lett. 50, 3–15 (2013). doi:10.​1007/​s11249-012-0044-3 CrossRef
  • 作者单位:Kosuke Suzuki (1)
    Yuji Hirai (2)
    Masatsugu Shimomura (2)
    Takuya Ohzono (1)

    1. Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba-shi, Ibaraki, 305-8565, Japan
    2. Department of Applied Chemistry and Bioscience, Chitose Institute of Science and Technology, 758-65 Bibi, Chitose-shi, Hokkaido, 066-8655, Japan
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Tribology, Corrosion and Coatings
    Surfaces and Interfaces and Thin Films
    Theoretical and Applied Mechanics
    Physical Chemistry
    Nanotechnology
  • 出版者:Springer Netherlands
  • ISSN:1573-2711
文摘
A new system is presented for controlling of friction through manipulating the contact between a rigid indenter and a porous-film-embedded polydimethylsiloxane (PDMS) rubber surface that can buckle to form regular microwrinkles depending on the applied lateral compression. The effect of this change in topography on friction is investigated with a fixed surface chemistry at the sliding interface to ensure a consistent value of adhesive shear strength per unit area of contact. With a wrinkled surface, a shorter stick–slip period and corresponding lower average force of friction are observed when compared to a flat PDMS surface. Based on the framework of Bowden–Tabor’s adhesive friction model, this result is attributed to a decrease in the contact area caused by an increase in the effective modulus and the distribution of interfacial contacts on the wrinkles. These results therefore imply that a shape-tunable microstructure is an effective approach to developing surfaces with dynamically tunable tribological properties.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700