用户名: 密码: 验证码:
Thermal properties and crystallization behaviors of polylactide/redwood flour or bamboo fiber composites
详细信息    查看全文
文摘
A series of polylactide/redwood flour (PLA/RWF) and polylactide/bamboo fiber (PLA/BF) composites were successfully prepared using a solution mixing procedure. Fourier transform infrared spectroscopy (FTIR) and wide-angle X-ray diffraction (XRD) were employed to characterize these composites. Thermal properties and crystallization behaviors of PLA composites were determined by their respective techniques of differential scanning calorimetry (DSC) and polarized optical microscopy (POM). With the increasing content of fibers, the glass transition temperature (Tg), crystallization temperature (Tc), and melting temperature (Tm) of PLA/RWF composites decreased first and then increased, but Tg and Tm of PLA/BF composites increased first and decreased afterwards. It is suggested that fibers could improve the segmental mobility of PLA; meanwhile, the different morphologies, sizes, and densities of RWF and BF have different effects on thermal properties of composites. Under the increasing content of RWF, the crystallization rate of the composite increased first and decreased afterwards. When the content of RWF was 5%, the crystallization rate was at its maximum. It could be possible that the addition of fibers was able to nucleate PLA and increase the degree of crystallinity, but the excess content of fibers easily led to heterogeneous composites and subsequent poor crystallization behaviors. In a word, thermal properties and crystallization behaviors of PLA composites were regularly changing by increasing content of fibers.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700