用户名: 密码: 验证码:
Tuning the Surface Properties of Oxygen-Rich and Nitrogen-Rich Plasma Polymers: Functional Groups and Surface Charge
详细信息    查看全文
  • 作者:Sara Babaei ; Pierre-Luc Girard-Lauriault
  • 关键词:Plasma polymer ; Oxygen ; rich ; Nitrogen ; rich ; Surface charge ; Functional groups
  • 刊名:Plasma Chemistry and Plasma Processing
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:36
  • 期:2
  • 页码:651-666
  • 全文大小:1,108 KB
  • 参考文献:1.Lloyd AW, Faragher RG, Denyer SP (2001) Ocular biomaterials and implants. Biomaterials 22(8):769–785CrossRef
    2.Förch R, Chifen AN, Bousquet A, Khor HL, Jungblut M, Chu LQ, Zhang Z, Osey-Mensah I, Sinner EK, Knoll W (2007) Recent and expected roles of plasma-polymerized films for biomedical applications. Chem Vap Depos 13(6–7):280–294CrossRef
    3.Ponamoreva O, Kamanina O, Alferov V, Machulin A, Rogova T, Arlyapov V, Alferov S, Suzina N, Ivanova E (2014) Yeast-based self-organized hybrid bio-silica sol–gels for the design of biosensors. Biosens Bioelectron 67:321–326CrossRef
    4.Sriram M, Sainitya R, Kalyanaraman V, Dhivya S, Selvamurugan N (2015) Biomaterials mediated microRNA delivery for bone tissue engineering. Int J Biol Macromol 74:404–412CrossRef
    5.Wang X, Schröder HC, Müller WE (2014) Enzyme-based biosilica and biocalcite: biomaterials for the future in regenerative medicine. Trends Biotechnol 32(9):441–447CrossRef
    6.Yavari SA, Ahmadi S, Wauthle R, Pouran B, Schrooten J, Weinans H, Zadpoor A (2015) Relationship between unit cell type and porosity and the fatigue behavior of selective laser melted meta-biomaterials. J Mech Behav Biomed Mater 43:91–100CrossRef
    7.Zhao Y, Feric NT, Thavandiran N, Nunes SS, Radisic M (2014) The role of tissue engineering and biomaterials in cardiac regenerative medicine. Can J Cardiol 30(11):1307–1322CrossRef
    8.Chandra P, Yoo JJ, Lee SJ (2015) Biomaterials in regenerative medicine, challenges in technology transfer from science to process development. In: Atala A, Alickson J (eds) Translational regenerative medicine, 1st edn. Elsevier, Amsterdam
    9.Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021CrossRef
    10.Bazaka O, Bazaka K (2015) Surface modification of biomaterials for biofilm control. In: Barnes L, Cooper IR (eds) Biomaterials and medical device—associated infections, 1st edn. Elsevier Woodhead, Amsterdam
    11.Holmes C, Tabrizian M (2015) In Vishwakarma A, Sharpe P, Shi S, Ramalingam M, Stem cell biology and tissue engineering in dental sciences, Academic Press, London
    12.Kurella A, Dahotre NB (2005) Review paper: surface modification for bioimplants: the role of laser surface engineering. J Biomater Appl 20(1):5–50CrossRef
    13.Bullett NA, Bullett DP, Truica-Marasescu F-E, Lerouge S, Mwale F, Wertheimer MR (2004) Polymer surface micropatterning by plasma and VUV-photochemical modification for controlled cell culture. Appl Surf Sci 235(4):395–405CrossRef
    14.Cireli A, Kutlu B, Mutlu M (2007) Surface modification of polyester and polyamide fabrics by low frequency plasma polymerization of acrylic acid. J Appl Polym Sci 104(4):2318–2322CrossRef
    15.Dhayal M, Jeong HG, Choi JS (2005) Use of plasma polymerisation process for fabrication of bio-MEMS for micro-fluidic devices. Appl Surf Sci 252(5):1710–1715CrossRef
    16.Garcia-Fernandez MJ, Martinez-Calvo L, Ruiz JC, Wertheimer MR, Concheiro A, Alvarez-Lorenzo C (2012) Loading and release of drugs from oxygen-rich plasma polymer coatings. Plasma Processes Polym 9(5):540–549CrossRef
    17.Alvarez-Lorenzo C, Bucio E, Burillo G, Concheiro A (2010) Medical devices modified at the surface by gamma-ray grafting for drug loading and delivery. Expert Opin Drug Deliv 7(2):173–185CrossRef
    18.Wang W, Wang L, Chen X, Yang Q, Sun TX, Zhou JF (2006) Study on the graft reaction of poly(propylene) fiber with acrylic acid. Macromol Mater Eng 291(2):173–180CrossRef
    19.Webb K, Hlady V, Tresco PA (1998) Relative importance of surface wettability and charged functional groups on NIH 3T3 fibroblast attachment, spreading, and cytoskeletal organization. J Biomed Mater Res 41(3):422–430CrossRef
    20.Vladkova TG (2010) Surface engineered polymeric biomaterials with improved biocontact properties. Int J Polym Sci. doi:10.​1155/​2010/​296094
    21.Meyer-Plath AA, Schröder K, Finke B, Ohl A (2003) Current trends in biomaterial surface functionalization—nitrogen-containing plasma assisted processes with enhanced selectivity. Vacuum 71(3):391–406CrossRef
    22.Siow KS, Britcher L, Kumar S, Griesser HJ (2006) Plasma methods for the generation of chemically reactive surfaces for biomolecule immobilization and cell colonization—a review. Plasma Process Polym 3(6–7):392–418CrossRef
    23.Girard-Lauriault P-L, Mwale F, Iordanova M, Demers C, Desjardins P, Wertheimer MR (2005) Atmospheric pressure deposition of micropatterned nitrogen-rich plasma-polymer films for tissue engineering. Plasma Process Polym 2(3):263–270CrossRef
    24.Oran U, Swaraj S, Lippitz A, Unger WES (2006) Surface analysis of plasma deposited polymer films, 7. Plasma Process Polym 3(3):288–298CrossRef
    25.Friedrich J, Kühn G, Mix R, Unger W (2004) Formation of plasma polymer layers with functional groups of different type and density at polymer surfaces and their interaction with Al atoms. Plasma Process Polym 1(1):28–50CrossRef
    26.Swaraj S, Oran U, Lippitz A, Friedrich JF, Unger WES (2005) Study of influence of external plasma parameters on plasma polymerised films prepared from organic molecules (acrylic acid, allyl alcohol, allyl amine) using XPS and NEXAFS. Surf Coat Technol 200:494–497 (1-4 SPEC. ISS.) CrossRef
    27.Wertheimer MR, St-Georges-Robillard A, Lerouge S, Mwale F, Elkin B, Oehr C, Wirges W, Gerhard R (2012) Amine-rich organic thin films for cell culture: possible electrostatic effects in cell–surface interactions. Jpn J Appl Phys 51(11S):11PJ04CrossRef
    28.Duque L, Queralto N, Francesch L, Bumbu GG, Borros S, Berger R, Forch R (2010) Reactions of plasma-polymerised pentafluorophenyl methacrylate with simple amines. Plasma Process Polym 7(11):915–925CrossRef
    29.Duque L, Menges B, Borros S, Forch R (2010) Immobilization of biomolecules to plasma polymerized pentafluorophenyl methacrylate. Biomacromolecules 11(10):2818–2823CrossRef
    30.Yasuda H (2012) Plasma polymerization. Academic press, Orlando
    31.Dargahi M, Nelea V, Mousa A, Omanovic S, Kaartinen MT (2014) Electrochemical modulation of plasma fibronectin surface conformation enables filament formation and control of endothelial cell–surface interactions. RSC Adv 4(88):47769–47780CrossRef
    32.Dargahi M, Omanovic S (2014) A comparative PM-IRRAS and ellipsometry study of the adsorptive behaviour of bovine serum albumin on a gold surface. Colloids Surf B 116:383–388CrossRef
    33.Contreras-Garcia A, Wertheimer MR (2013) Low-pressure plasma polymerization of acetylene-ammonia mixtures for biomedical applications. Plasma Chem Plasma Process 33(1):147–163CrossRef
    34.Wertheimer MR, St-Georges-Robillard A, Lerouge S, Mwale F, Elkin B, Oehr C, Wirges W, Gerhard R (2012) Fabrication and characterization of organic thin films for applications in tissue engineering: emphasis on cell-surface interactions. In: Materials research society symposium proceedings, pp. 43–48
    35.Ruiz JC, Girard-Lauriault PL, Poulin S, Truica-Marasescu F, Wertheimer MR (2009) Plasma and vacuum-ultraviolet (VUV) photo polymerisation of “mono-functional” thin films. In: 8th World congress of chemical engineering: incorporating the 59th Canadian chemical engineering conference and the 24th interamerican congress of chemical engineering
    36.Girard-Lauriault PL, Truica-Marasescu F, Petit A, Wang HT, Desjardins P, Antoniou J, Mwale F, Wertheimer MR (2009) Adhesion of human U937 monocytes to nitrogen-rich organic thin films: novel insights into the mechanism of cellular adhesion. Macromol Biosci 9(9):911–921CrossRef
    37.Klages CP, Khosravi Z, Hinze A (2013) some remarks on chemical derivatization of polymer surfaces after exposure to nitrogen-containing plasmas. Plasma Process Polym 10(4):307–312CrossRef
    38.Truica-Marasescu F, Wertheimer MR (2008) Nitrogen-rich plasma-polymer films for biomedical applications. Plasma Process Polym 5(1):44–57CrossRef
    39.Hegemann D, Hossain M-M (2005) Influence of non-polymerizable gases added during plasma polymerization. Plasma Process Polym 2(7):554–562. doi:10.​1002/​ppap.​200500041 CrossRef
    40.Hossain MM, Herrmann AS, Hegemann D (2007) Incorporation of accessible functionalities in nanoscaled coatings on textiles characterized by coloration. Plasma Process Polym 4(2):135–144CrossRef
    41.Hammer P, Alvarez F (2001) Influence of chemical sputtering on the composition and bonding structure of carbon nitride films. Thin Solid Films 398:116–123CrossRef
    42.Hossain MM, Müssig J, Herrmann AS, Hegemann D (2009) Ammonia/acetylene plasma deposition: an alternative approach to the dyeing of poly(ethylene terephthalate) fabrics at low temperatures. J Appl Polym Sci 111(5):2545–2552CrossRef
    43.Hegemann D, Körner E, Albrecht K, Schütz U, Guimond S (2010) Growth mechanism of oxygen-containing functional plasma polymers. Plasma Processes Polym 7(11):889–898CrossRef
    44.Chan C-M, Ko T-M, Hiraoka H (1996) Polymer surface modification by plasmas and photons. Surf Sci Rep 24(1):1–54CrossRef
    45.Hossain MM, Hegemann D, Fortunato G, Herrmann AS, Heuberger M (2007) Plasma deposition of permanent superhydrophilic a—C:H: N films on textiles. Plasma Process Polym 4(4):471–481CrossRef
    46.Biederman H (2004) Plasma polymer films. Imperial College Press, LondonCrossRef
    47.Ruiz J-C, St-Georges-Robillard A, Thérésy C, Lerouge S, Wertheimer MR (2010) Fabrication and characterisation of amine-rich organic thin films: focus on stability. Plasma Process Polym 7(9–10):737–753CrossRef
    48.Shard AG, Whittle JD, Beck AJ, Brookes PN, Bullett NA, Talib RA, Mistry A, Barton D, McArthur SL (2004) A NEXAFS examination of unsaturation in plasma polymers of allylamine and propylamine. J Phys Chem B 108(33):12472–12480CrossRef
    49.Gengenbach TR, Griesser HJ (1999) Aging of 1, 3-diaminopropane plasma-deposited polymer films: mechanisms and reaction pathways. J Polym Sci Part A Polym Chem 37(13):2191–2206CrossRef
    50.Walker SL, Bhattacharjee S, Hoek EMV, Elimelech M (2002) A novel asymmetric clamping cell for measuring streaming potential of flat surfaces. Langmuir 18(6):2193–2198CrossRef
    51.Childress AE, Elimelech M (1996) Effect of solution chemistry on the surface charge of polymeric reverse osmosis and nanofiltration membranes. J Membr Sci 119(2):253–268CrossRef
  • 作者单位:Sara Babaei (1)
    Pierre-Luc Girard-Lauriault (1)

    1. Plasma Processing Laboratory, Department of Chemical Engineering, McGill University, Montreal, QC, H3A 0C5, Canada
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Mechanics
    Characterization and Evaluation Materials
    Mechanical Engineering
    Inorganic Chemistry
    Nuclear Physics, Heavy Ions and Hadrons
  • 出版者:Springer Netherlands
  • ISSN:1572-8986
文摘
Controlling the concentration and nature of functional groups in plasma polymer films by adjusting the flow ratio of constituent precursor gases can be exploited to tune the surface charge of the resulting coating. Plasma polymer films containing various concentrations of nitrogen and oxygen functional groups were deposited in a low-pressure capacitively-coupled glow discharge reactor by plasma polymerization of binary gas mixtures of a hydrocarbon (ethylene or butadiene) and a heteroatom source gas (ammonia and/or carbon dioxide). Increasing the flow ratio of heteroatom to hydrocarbon gases increased the concentration of bonded nitrogen or oxygen, including that of primary amine or carboxylic groups as determined by X-ray photoelectron spectroscopy and chemical derivatization procedures. The zeta potential of samples was measured using an electro-kinetic analyser in a diluted sodium chloride solution. The deposition parameters controlled the composition of the coatings, allowing to tune the surface charge to either positive (ammonia based films)—or negatively (carbon dioxide base films) values at physiological pH. Keywords Plasma polymer Oxygen-rich Nitrogen-rich Surface charge Functional groups

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700