用户名: 密码: 验证码:
Structural and electrochemical characterization of polyaniline/LiCoO2 nanocomposites prepared via a Pickering emulsion
详细信息    查看全文
  • 作者:Karima Ferchichi (1)
    Souhaira Hbaieb (1)
    Noureddine Amdouni (1)
    Valérie Pralong (2)
    Yves Chevalier (3)
  • 关键词:Conducting polymer ; Pickering emulsion ; PANI/LiCoO2 nanocomposite materials ; Lithium battery materials
  • 刊名:Journal of Solid State Electrochemistry
  • 出版年:2013
  • 出版时间:May 2013
  • 年:2013
  • 卷:17
  • 期:5
  • 页码:1435-1447
  • 全文大小:798KB
  • 参考文献:1. Abe T, Koyama T (2011) Calphad 35:209-18 CrossRef
    2. Jinpeng Y, Han Z, Xiaohong H, Zhan H, Zhou Y, Liu X (2013) J Power Sources 225:34-9 CrossRef
    3. MacDiarmid AG (2001) Angew Chem Int Ed 40:2581-590 CrossRef
    4. Dimitrakopoulos CD, Malenfant PRL (2002) Adv Mater 14:99-17 CrossRef
    5. Virji S, Kaner RB, Weiller BH (2005) Chem Mater 17:1256-260 CrossRef
    6. Venkatachalam S, Prabhakaran PV (1998) Synth Metals 97:141-46 CrossRef
    7. Tahir ZM, Alocilja EC, Grooms DL (2007) Sensors 7:1123-140 CrossRef
    8. Liang L, Liu J, Windisch CF, Exarhos GJ, Lin Y (2002) Angew Chem Int Ed 41:3665-668 CrossRef
    9. Rudge A, Raistrick I, Gottesfeld S, Ferraris JP (1994) Electrochim Acta 39:273-87 CrossRef
    10. Talbi H, Just PE, Dao LH (2003) J Appl Electrochem 33:465-73 CrossRef
    11. Peng C, Zhang SW, Jewell D, Chen GZ (2008) Prog Nat Sci 18:777-88 CrossRef
    12. Huang LM, Wen TC, Gopalan A (2006) Electrochim Acta 51:3469-476 CrossRef
    13. Lota K, Khomenko V, Frackowiak E (2004) J Phys Chem Solids 65:295-01 CrossRef
    14. Kanatzidis MG, Wu CG, Marcy HO, Kannewurf CR (1989) J Am Chem Soc 111:4139-141 CrossRef
    15. Leroux F, Koene BE, Nazar LF (1996) J Electrochem Soc 143:L181–L183 CrossRef
    16. Leroux F, Goward G, Power WP, Nazar LF (1997) J Electrochem Soc 144:3886-895 CrossRef
    17. Ruiz-Hitzky E (1993) Adv Mater 5:334-40 CrossRef
    18. Ruiz-Hitzky E, Aranda P, Quim AN (1997) Int Ed 93:197-12
    19. Gomez-Romero P (2001) Adv Mater 13:163-74 CrossRef
    20. Ahn D, Koo YM, Kim MG, Shin N, Park J, Eom J, Cho J, Shin TJ (2010) J Phys Chem C 114:3675-680 CrossRef
    21. Chen WM, Huang YH, Yuan LX (2011) J Electroanal Chem 660:108-13 CrossRef
    22. Neves S, Canobre SC, Oliveira RS, Polo Fonseca C (2009) J Power Sources 189:1167-173 CrossRef
    23. Xiao Q, Tan X, Ji L, Xue J (2007) Synth Met 157:784-91 CrossRef
    24. Sullivan AP, Kilpatrick PK (2002) Ind Eng Chem Res 41:3389-404 CrossRef
    25. Binks BP, Clint JH (2002) Langmuir 18:1270-273 CrossRef
    26. He Y, Yu X (2007) Mater Lett 61:2071-074 CrossRef
    27. He Y (2005) Appl Surf Sci 249:1- CrossRef
    28. He Y (2004) Powder Technol 147:59-3 CrossRef
    29. He Y (2005) Mater Chem Phys 92:134-37 CrossRef
    30. Zhan SH, Li Y, Yu HB (2008) J Dispersion Sci Technol 29:702-05 CrossRef
    31. Song GP, Bo J, Guo R (2005) Colloid Polym Sci 283:677-80 CrossRef
    32. Mosqueda Y, Pérez-Cappe E, Arana J, Longo E, Ries A, Cilense M, Nascente PAP, Aranda P, Ruiz-Hitzky E (2006) J Solid State Chem 179:308-14 CrossRef
    33. Qi Y, Zhang J, Qiu S, Sun L, Xu F, Liuzhang O, Sun D (2009) J Therm Anal Calorim 98:533-37 CrossRef
    34. Predoan? L, Bar?u (Szatvanyi) A, Zaharescu M, Vasilchina H, Velinova N, Banov B, Momchilov A (2004) Proceedings of the International Workshop "Advanced Techniques for Energy Sources Investigation and Testing" 4- Sept Sofia, Bulgaria
    35. Song SW, Han KS, Fujita H, Yoshimura M (2001) Chem Phys Lett 344:299-04 CrossRef
    36. do Nascimento GM, Silva CHB, Temperini MLA (2006) Macromol Rapid Commun 27:255-59 CrossRef
    37. Tang CW, Wang CB, Chien SH (2008) Thermochim Acta 473:68-3 CrossRef
    38. Gabrisch H, Kombolias M, Mohanty D (2010) Solid State Ionics 181:71-8 CrossRef
    39. Reimers JN, Dahn JR (1992) J Electochem Soc 139:2091-097 CrossRef
    40. Wu TM, Lin YW, Liao CS (2005) Carbon 43:734-40 CrossRef
    41. Ding Y, Zhang P, Jiang Y, Gao D (2007) Solid State Ionics 178:967-71 CrossRef
    42. Qi Y, Zhang J, Qiu S, Sun L, Xu F, Zhu M, Liuzhang O, Sun D (2009) J Therm Anal Calorim 98:533-37 CrossRef
    43. Sridevi V, Malathi S, Devi CS (2011) Chem Sci J 26:1-
    44. Zhu C-L, Chou S-W, He S-F, Liao W-N, Chen C-C (2007) Nanotechnology 18:275604-75609 CrossRef
    45. Shreepathi S, Holze R (2006) Langmuir 22:5196-204 CrossRef
    46. Wei Y, Kim KB, Chen G, Park CW (2008) Mater Charact 59:1196-200 CrossRef
    47. Hashiba M, Okamoto H, Nurishi Y, Hiramatsu K (1988) J Mater Sci 23:2893-896 CrossRef
    48. Kim DH, Jeong ED, Kim SP, Shim YB (2000) Bull Korean Chem Soc 21:1125-132
    49. Teshima K, Lee S, Mizuno Y, Inagaki H, Hozumi M, Kohama K, Yubuta K, Shishido T, Oishi S (2010) J Am Chem Soc. doi:10.1021/cg100705d
    50. Perez-Cappe E, Mosqueda Y, Mart?nez R, Milian CR, Sanchez O, Varela JA, Hortencia A, Souza E, Arandad P, Ruiz-Hitzky E (2008) J Mater Chem 18:3965-971 CrossRef
    51. Julien CM (2003) Solid State Ionics 157:57-1 CrossRef
    52. Lu CH, Lin SW (2001) J Power Sources 97-8:458-60 CrossRef
  • 作者单位:Karima Ferchichi (1)
    Souhaira Hbaieb (1)
    Noureddine Amdouni (1)
    Valérie Pralong (2)
    Yves Chevalier (3)

    1. UR. Physico-Chimie des Matériaux Solides Faculté des Sciences de Tunis, Manar II, 2092, Tunis, Tunisia
    2. Laboratoire de cristallographie et sciences des matériaux CRISMAT ENSICAEN, 6 Bd Marechal Juin, 14050, Caen, France
    3. Laboratoire d’Automatique et de Génie des Procédés (LAGEP), Université Claude Bernard Lyon 1, CNRS UMR 5007, 69622, Villeurbanne, France
  • ISSN:1433-0768
文摘
Polyaniline (PANI)/LiCoO2 nanocomposite materials are successfully ready through a solid-stabilized emulsion (Pickering emulsion) route. The properties of nanocomposite materials have been put to the test because of their possible relevance to electrodes of lithium batteries. Such nanocomposite materials appear thanks to the polymerization of aniline in Pickering emulsion stabilized with LiCoO2 particles. PANI has been produced through oxidative polymerization of aniline and ammonium persulfate in HCl solution. The nanocomposite materials of PANI/LiCoO2 could be formed with low amounts of PANI. The morphology of PANI/LiCoO2 nanocomposite materials shows nanofibers and round-shape-like morphology. It was found that the morphology of the resulting nanocomposites depended on the amount of LiCoO2 used in the reaction system. Ammonium persulfate caused the loss of lithium from LiCoO2 when it was used at high concentration in the polymerization recipe. Highly resolved splitting of 006/102 and 108/110 peaks in the XRD pattern provide evidence to well-ordered layered structure of the PANI/LiCoO2 nanocomposite materials with high LiCoO2 content. The ratios of the intensities of 003 and 104 peaks were found to be higher than 1.2 indicating no pronounced mixing of the lithium and cobalt cations. The electrochemical reactivity of PANI/LiCoO2 nanocomposites as positive electrode in a lithium battery was examined during lithium ion deinsertion and insertion by galvanostatic charge–discharge testing; PANI/LiCoO2 nanocomposite materials exhibited better electrochemical performance by increasing the reaction reversibility and capacity compared to that of the pristine LiCoO2 cathode. The best advancement has been observed for the PANI/LiCoO2 nanocomposite 5?wt.% of aniline.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700