用户名: 密码: 验证码:
Characteristic analysis of praseodymium doped superfluorescent fluoride fiber source operating at 1.3 μm
详细信息    查看全文
  • 作者:T. C. Huang ; Q. He ; X. W. Shu ; C. Liu
  • 关键词:Superfluorescent fluoride fiber source ; Praseodymium doped fiber (PDF) ; Fiber optic gyroscope ; Quasi ; Gaussian spectra
  • 刊名:Optical and Quantum Electronics
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:48
  • 期:2
  • 全文大小:1,142 KB
  • 参考文献:Bergh, R.A., Lefevre, H.C., Shaw, H.J.: An overview of fiber-optic gyroscopes. J. Lightw. Technol. 2(2), 91–107 (1984)CrossRef ADS
    Falquier, D.G.: Erbium doped superfluorescent fiber sources for the fiber optic gyroscope. [PhD. Thesis], Stanford University (2000)
    Karasek M.: Numerical Analysis of Pr3+-doped fluoride fiber amplifier. IEEE Photonics technology letters 4(11), 1266–1269 (1992)
    Lefèvre, H.C.: The fiber-optic gyroscope: challenges to become the ultimate rotation-sensing technology. Opt. Fiber Technol. 19, 828–832 (2013)CrossRef ADS
    Ohishi, Y., Kanamori, T., Takahashi, S.: Pr3+-doped superfluorescent fluoride fiber laser. Jpn. J. Appl. Phys. 30(7), L1282–L1284 (1991)CrossRef ADS
    Pedersen, B., Miniscalco, W.J., Quimby, R.S.: Optimization of Pr3+: ZBLAN fiber amplifiers. IEEE Photonics technology letters 4(5), 446–448 (1992)
    Quimby, R.S., Zheng, B.: New excited-state absorption measurement technique and application to Pr3+ doped fluorozirconate glass. Appl. Phys. Lett. 60(9), 1055–1057 (1992)
    Riumkin, K.E., Mel’kumov, M.A., et al.: Superfluorescent 1.34 μm bismuth-doped fibre source. Quantum Electron. 44(7), 700–702 (2014)CrossRef ADS
    Swanson, E.A., Izatt, J.A., Hee, M.R., Huang, D., Lin, C.P., Schuman, J.S., Puliafito, C.A., Fujimoto, J.G.: In vivo retinal imaging by optical coherence tomography. Opt. Lett. 18, 1864–1866 (1993)CrossRef ADS
    Takada, K., Shimizu, M., Yamada, M., Horiguchi, M., Himeno, A., Yukimatsu, K.: Ultra high sensitivity low coherence OTDR using Er3+-doped high-power superfluorescent fiber source. Electon. Lett. 28, 29–31 (1992)CrossRef
    van Osch, A.W.H.: Modeling of praseodymium-doped fluoride and sulfide fiber amplifiers for the 1.3 μm wavelength region, EUT Report 95-E-294 ISBN 90-6144-294-X October (1995)
    Wang, L.A., Su, C.D.: Modeling of a double-pass backward Er-doped superfluorescent fiber source for fiber-optic gyroscope applications. J. Lightw. Technol. 17(11), P2307–P2315 (1999)CrossRef ADS
    Wysocki, P.F., Digolmet, J.F., Kim, B.Y., Shaw, H.J.: Characteristic of erbium-doped superfluorescent fiber sources for interferometric sensor applications. IEEE Photonics Technol. 12, P550–P567 (1994)
  • 作者单位:T. C. Huang (1)
    Q. He (1)
    X. W. Shu (1)
    C. Liu (1)

    1. State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, NO. 38, ZheDa Road, Hangzhou, 310027, Zhejiang, People’s Republic of China
  • 刊物主题:Optics, Optoelectronics, Plasmonics and Optical Devices; Electrical Engineering; Characterization and Evaluation of Materials; Computer Communication Networks;
  • 出版者:Springer US
  • ISSN:1572-817X
文摘
The characteristics of praseodymium doped superfluorescent fluoride fiber source (SFFS) operating in the 1.3 μm band, including output power, bandwidth and spectrum, are investigated theoretically and experimentally in this paper. The effects of fiber length and pump power on characteristics of different configuration sources are modeled at the pump wavelength of 980 and 1015 nm. The numerical simulation results show that double pass configuration sources are more efficient than single configuration sources. The full width at half maximum (FWHM) bandwidth is more than 20 nm. The output power of more than 4 mW has been obtained experimentally with a double pass backward configuration SFFS, and its FWHM bandwidth is about 20 nm. The SFFS has quasi-Gaussian output spectra both theoretically and experimentally.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700