用户名: 密码: 验证码:
Tool wear monitoring based on kernel principal component analysis and v-support vector regression
详细信息    查看全文
  • 作者:Dongdong Kong ; Yongjie Chen ; Ning Li…
  • 关键词:Tool wear monitoring ; Cutting forces ; Signal features ; KPCA ; SVR
  • 刊名:The International Journal of Advanced Manufacturing Technology
  • 出版年:2017
  • 出版时间:March 2017
  • 年:2017
  • 卷:89
  • 期:1-4
  • 页码:175-190
  • 全文大小:
  • 刊物类别:Engineering
  • 刊物主题:Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design;
  • 出版者:Springer London
  • ISSN:1433-3015
  • 卷排序:89
文摘
Machined surface quality and dimensional accuracy are significantly affected by tool wear in machining process, and severe tool wear may even lead to failing of the workpieces being processed. Tool wear monitoring is highly desirable to realize automated or unmanned machining process, which can get rid of the dependence on skilled workers. This paper mainly studies on the methods and techniques of on-line tool wear monitoring through static and dynamic cutting force signals. Sensitive signals related to tool wear are preliminarily selected by using correlation coefficient method. Kernel principal component analysis (KPCA) technique is adopted to fuse these sensitive features for improving training speed and prediction accuracy. Then, the tool wear predictive model based on v-support vector regression (v-SVR) is constructed through learning correlation between the fused features and actual tool wear. The obtained result shows that the prediction accuracy of the proposed tool wear model is proved effective beyond expectation. Besides, the proposed model still has better generalization ability even in small sample size.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700