用户名: 密码: 验证码:
Investigation of antibacterial activity of aspidin BB against Propionibacterium acnes
详细信息    查看全文
  • 作者:Chang Gao ; Na Guo ; Na Li ; Xiao Peng ; Peng Wang…
  • 关键词:Dryopteris fragrans ; Dryopteriaceae ; Aspidin BB ; Antibacterial ; Membrane ; Lipase
  • 刊名:Archives of Dermatological Research
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:308
  • 期:2
  • 页码:79-86
  • 全文大小:2,150 KB
  • 参考文献:1.Acne AO (2003) Pathological mechanisms of acne with special emphasis on Propionibacterium acnes and related therapy. Acta Derm Venereol 83(4):241–248CrossRef
    2.Arican O, Kurutas EB, Sasmaz S (2005) Oxidative stress in patients with acne vulgaris. Mediators Inflamm 6:380–384CrossRef
    3.Bojar RA, Holland KT (2004) Acne and Propionibacterium acnes. Clin Dermatol 22(5):375–379CrossRef PubMed
    4.Braga PC, Ricci D (1998) Atomic force microscopy: application to investigation of Escherichia coli morphology before and after exposure to cefodizime. Antimicrob Agents Chemother 42(1):18–22PubMedCentral PubMed
    5.Brüggemann H, Henne A, Hoster F, Liesegang H, Wiezer A, Strittmatter A, Hujer S, Dürre P, Gottschalk G (2004) The complete genome sequence of Propionibacterium acnes, a commensal of human skin. Science 305(5684):671–673CrossRef PubMed
    6.Citron DM, Kwok YY, Appleman MD (2005) In vitro activity of oritavancin (LY333328), vancomycin, clindamycin, and metronidazole against Clostridium perfringens, Propionibacterium acnes, and anaerobic Gram-positive cocci. Anaerobe. 11(1):93–95CrossRef PubMed
    7.Fu Y, Chen L, Zu Y, Liu Z, Liu X, Liu Y, Yao L, Efferth T (2009) The antibacterial activity of clove essential oil against Propionibacterium acnes and its mechanism of action. Arch Dermatol 145(1):86–88CrossRef PubMed
    8.He F, Yang Y, Yang G, Yu L (2010) Studies on antibacterial activity and antibacterial mechanism of a novel polysaccharide from Streptomyces virginia H03. Food Control 21(9):1257–1262CrossRef
    9.Ho P, Chow K, Lai EL, Law PY, Chan P, Ho AY, Ng T, Yam W (2012) Clonality and antimicrobial susceptibility of Staphylococcus aureus and methicillin-resistant S. aureus isolates from food animals and other animals. J Clin Microbiol 50(11):3735–3737PubMedCentral CrossRef PubMed
    10.Humphries KM, Szweda LI (1998) Selective inactivation of α-ketoglutarate dehydrogenase and pyruvate dehydrogenase: reaction of lipoic acid with 4-hydroxy-2-nonenal. Biochemistry 37(45):15835–15841CrossRef PubMed
    11.Kumar A, Pandey AK, Singh SS, Shanker R, Dhawan A (2011) Engineered ZnO and TiO2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Radical Bio Med. 51(10):1872–1881CrossRef
    12.Li XJ, Fu YJ, Luo M, Wang W, Zhang L, Zhao CJ, Zu YG (2012) Preparative separation of dryofragin and aspidin BB from Dryopteris fragrans extracts by macroporous resin column chromatography. J Pharm Biomed Anal 61:199–206CrossRef PubMed
    13.Nakatsuji T, Kao MC, Fang JY, Zouboulis CC, Zhang L, Gallo RL, Huang CM (2009) Antimicrobial property of lauric acid against Propionibacterium acnes: its therapeutic potential for inflammatory acne vulgaris. J Invest Dermatol. 129(10):2480–2488PubMedCentral CrossRef PubMed
    14.Navarre WW, Schneewind O (1999) Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev 63(1):174–229PubMedCentral PubMed
    15.Park J, Lee J, Jung E, Park Y, Kim K, Park B, Jung K, Park E, Kim J, Park D (2004) In vitro antibacterial and anti-inflammatory effects of honokiol and magnolol against Propionibacterium sp. Eur J Pharmacol 496(1–3):189–195CrossRef PubMed
    16.Ruiz C, Falcocchio S, Xoxi E, Javier Pastor FI, Diaz P, Saso L (2004) Activation and inhibition of Candida rugosa and Bacillus-related lipases by saturated fatty acids, evaluated by a new colorimetric microassay. Biochim Biophys Acta 1672(3):184–191CrossRef PubMed
    17.Schäffer C, Messner P (2005) The structure of secondary cell wall polymers: how Gram-positive bacteria stick their cell walls together. Microbiology 151(Pt 3):643–651CrossRef PubMed
    18.Singh IP, Sidana J, Bansal P, Foley WJ (2009) Phloroglucinol compounds of therapeutic interest: global patent and technology status. Expert Opin Ther Pat 19(6):847–866CrossRef PubMed
    19.Toyoda M, Morohashi M (2011) Pathogenesis of acne. Medical Electron Microscopy. 34(1):29–40CrossRef
    20.Wang Y, Song R, Shen J (2003) Understanding tapping-mode atomic force microscopy data on the surface of soft block copolymers. Appl Surf Sci 530(3):136–148CrossRef
    21.Weaber K, Freedman R, Eudy WW (1971) Tetracycline inhibition of a lipase from Corynebacterium acnes. Appl Microbiol 21(4):639–642PubMedCentral PubMed
    22.Zu Y, Liu X, Fu Y, Wu N, Kong Y, Wink M (2010) Chemical composition of the SFE-CO2 extracts from Cajanus cajan(L.) Huth and their antimicrobial activity in vitro and in vivo. Phytomedicine 17(14):1095–1101CrossRef PubMed
  • 作者单位:Chang Gao (1)
    Na Guo (2)
    Na Li (2)
    Xiao Peng (2)
    Peng Wang (2)
    Wei Wang (2)
    Meng Luo (2)
    Yu-jie Fu (2)

    1. College of Basic Medical Science, Peking University Health Science Center, Beijing, 100083, People’s Republic of China
    2. Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Box 332, Hexing Road 26, Harbin, 150040, People’s Republic of China
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Dermatology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-069X
文摘
In the present study, antibacterial activity of four kinds of phloroglucinol derivatives extracted from Dryopteris fragrans (L.) Schott against S. aureus, S. epidermidis and P. acnes has been tested. Aspidin BB exerted the strongest antibacterial activity with minimal inhibition concentration (MIC) values ranging from 7.81 to 15.63 μg/mL. The time-kill assay indicated that aspidin BB could kill P. acnes completely at 2 MIC (MBC) within 4 h. By using AFM, we demonstrated extensive cell surface alterations of aspidin BB-treated P. acnes. SDS-PAGE of supernatant proteins and lipid peroxidation results showed that aspidin BB dose-dependently affected membrane permeability of P. acnes. DNA damage and protein degradation of P. acnes were also verified. SDS-PAGE of precipitated proteins revealed possible targets of aspidin BB, i.e., heat shock proteins (26 kDa) and lipase (33 kDa) which could all cause inflammation. Aspidin BB also seriously increased the inhibition rate of lipase activity from 10.20 to 65.20 % to possibly inhibit the inflammation. In conclusions, the effective constituents of D. fragrans (L.) Schott to treat acne might be phloroglucinol derivatives including aspidin BB, aspidin PB, aspidinol and dryofragin. Among this, aspidin BB inhibited the growth of P. acnes by disrupting their membrane, DNA and proteins and finally leaded to the cell death. The obtained data highlighted the potential of using aspidin BB as an alternative treatment for acne vulgaris. Keywords Dryopteris fragrans, Dryopteriaceae Aspidin BB Antibacterial Membrane Lipase

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700