用户名: 密码: 验证码:
Drug repositioning for orphan genetic diseases through Conserved Anticoexpressed Gene Clusters (CAGCs)
详细信息    查看全文
  • 作者:Ivan Molineris (5)
    Ugo Ala (5)
    Paolo Provero (5)
    Ferdinando Di Cunto (5)
  • 刊名:BMC Bioinformatics
  • 出版年:2013
  • 出版时间:December 2013
  • 年:2013
  • 卷:14
  • 期:1
  • 全文大小:547 KB
  • 参考文献:1. Denis A, Mergaert L, Fostier C, Cleemput I, Simoens S: A comparative study of European rare disease and orphan drug markets. / Health Policy 2010, 97:173-. CrossRef
    2. Sardana D, Zhu C, Zhang M, Gudivada RC, Yang L, Jegga AG: Drug repositioning for orphan diseases. / Brief Bioinform 2011, 12:346-6. CrossRef
    3. Piro RM: Network medicine: linking disorders. / Hum Genet 2012, 131:1811-0. CrossRef
    4. Chan SY, Loscalzo J: The emerging paradigm of network medicine in the study of human disease. / Circ Res 2012, 111:359-4. CrossRef
    5. Guengerich FP: Mechanisms of drug toxicity and relevance to pharmaceutical development. / Drug Metab Pharmacokinet 2011, 26:3-4. CrossRef
    6. da Fonseca MA, Casamassimo P: Old drugs, new uses. / Pediatr Dent 2011, 33:67-4.
    7. Padhy BM, Gupta YK: Drug repositioning: re-investigating existing drugs for new therapeutic indications. / J Postgrad Med 2011, 57:153-0. CrossRef
    8. Ekins S, Williams AJ, Krasowski MD, Freundlich JS: In silico repositioning of approved drugs for rare and neglected diseases. / Drug Discov Today 2011, 16:298-10. CrossRef
    9. Gottlieb A, Stein GY, Ruppin E, Sharan R: PREDICT: a method for inferring novel drug indications with application to personalized medicine. / Mol Syst Biol 2011, 7:496. CrossRef
    10. Luo H, Chen J, Shi L, Mikailov M, Zhu H, Wang K, He L, Yang L: DRAR-CPI: a server for identifying drug repositioning potential and adverse drug reactions via the chemical-protein interactome. / Nucleic Acids Res 2011, 39:W492-. CrossRef
    11. Sanseau P, Agarwal P, Barnes MR, Pastinen T, Richards JB, Cardon LR, Mooser V: Use of genome-wide association studies for drug repositioning. / Nat Biotechnol 2012, 30:317-0. CrossRef
    12. Clark PM, Dawany N, Dampier W, Byers SW, Pestell RG, Tozeren A: Bioinformatics analysis reveals transcriptome and microRNA signatures and drug repositioning targets for IBD and other autoimmune diseases. / Inflamm Bowel Dis 2012, 18:2315-3. CrossRef
    13. Iorio F, Bosotti R, Scacheri E, Belcastro V, Mithbaokar P, Ferriero R, Murino L, Tagliaferri R, Brunetti-Pierri N, Isacchi A, / et al.: Discovery of drug mode of action and drug repositioning from transcriptional responses. / Proc Natl Acad Sci USA 2010, 107:14621-. CrossRef
    14. Iorio F, Isacchi A, di Bernardo D, Brunetti-Pierri N: Identification of small molecules enhancing autophagic function from drug network analysis. / Autophagy 2010, 6:1204-. CrossRef
    15. Lamb J: The Connectivity Map: a new tool for biomedical research. / Nat Rev Cancer 2007, 7:54-0. CrossRef
    16. Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, Lerner J, Brunet JP, Subramanian A, Ross KN, / et al.: The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. / Science 2006, 313:1929-5. CrossRef
    17. Stegmaier K, Wong JS, Ross KN, Chow KT, Peck D, Wright RD, Lessnick SL, Kung AL, Golub TR: Signature-based small molecule screening identifies cytosine arabinoside as an EWS/FLI modulator in Ewing sarcoma. / PLoS Med 2007, 4:e122. CrossRef
    18. Wang X, Dalkic E, Wu M, Chan C: Gene module level analysis: identification to networks and dynamics. / Curr Opin Biotechnol 2008, 19:482-1. CrossRef
    19. Oti M, Brunner HG: The modular nature of genetic diseases. / Clin Genet 2007, 71:1-1. CrossRef
    20. Eisen MB, Spellman PT, Brown PO, Botstein D: Cluster analysis and display of genome-wide expression patterns. / Proc Natl Acad Sci USA 1998, 95:14863-. CrossRef
    21. Ala U, Piro RM, Grassi E, Damasco C, Silengo L, Oti M, Provero P, Di Cunto F: Prediction of human disease genes by human-mouse conserved coexpression analysis. / PLoS Comput Biol 2008, 4:e1000043. CrossRef
    22. Miozzi L, Piro RM, Rosa F, Ala U, Silengo L, Di Cunto F, Provero P: Functional annotation and identification of candidate disease genes by computational analysis of normal tissue gene expression data. / PLoS One 2008, 3:e2439. CrossRef
    23. Oti M, van Reeuwijk J, Huynen MA, Brunner HG: Conserved co-expression for candidate disease gene prioritization. / BMC Bioinformatics 2008, 9:208. CrossRef
    24. Pellegrino M, Provero P, Silengo L, Di Cunto F: CLOE: identification of putative functional relationships among genes by comparison of expression profiles between two species. / BMC Bioinformatics 2004, 5:179. CrossRef
    25. Stuart JM, Segal E, Koller D, Kim SK: A Gene-Coexpression Network for Global Discovery of Conserved Genetic Modules. / Science 2003, 302:249-55. CrossRef
    26. Shatkay H, Edwards S, Wilbur WJ, Boguski M: Genes, themes and microarrays: using information retrieval for large-scale gene analysis. / Proc Int Conf Intell Syst Mol Biol 2000, 8:317-8.
    27. He F, Zhou Y, Zhang Z: Deciphering the Arabidopsis floral transition process by integrating a protein-protein interaction network and gene expression data. / Plant Physiol 2010, 153:1492-05. CrossRef
    28. Dhillon IS, Marcotte EM, Roshan U: Diametrical clustering for identifying anti-correlated gene clusters. / Bioinformatics 2003, 19:1612-. CrossRef
    29. Barrett T, Suzek TO, Troup DB, Wilhite SE, Ngau WC, Ledoux P, Rudnev D, Lash AE, Fujibuchi W, Edgar R: NCBI GEO: mining millions of expression profiles–database and tools. / Nucleic Acids Res 2005, 33:D562-. CrossRef
    30. Piro RM, Ala U, Molineris I, Grassi E, Bracco C, Perego GP, Provero P, Di Cunto F: An atlas of tissue-specific conserved coexpression for functional annotation and disease gene prediction. / Eur J Hum Genet 2011, 19:1173-0. CrossRef
    31. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, / et al.: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. / Nat Genet 2000, 25:25-. CrossRef
    32. van Driel MA, Bruggeman J, Vriend G, Brunner HG, Leunissen JA: A text-mining analysis of the human phenome. / Eur J Hum Genet 2006, 14:535-2. CrossRef
    33. Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A, Pon A, Banco K, Mak C, Neveu V: DrugBank 3.0: a comprehensive resource for 'omics' research on drugs. / Nucleic Acids Res 2011, 39:D1035-D1041. CrossRef
    34. Phiel CJ, Zhang F, Huang EY, Guenther MG, Lazar MA, Klein PS: Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. / J Biol Chem 2001, 276:36734-1. CrossRef
    35. Dhir A, Rogawski MA: Role of neurosteroids in the anticonvulsant activity of midazolam. / Br J Pharmacol 2012, 165:2684-1. CrossRef
    36. Lindemann P, Koch A, Degenhardt B, Hause G, Grimm B, Papadopoulos V: A novel Arabidopsis thaliana protein is a functional peripheral-type benzodiazepine receptor. / Plant Cell Physiol 2004, 45:723-3. CrossRef
    37. Rowles J, Olsen M: Perspectives on the development of antioxidant antiepileptogenic agents. / Mini Rev Med Chem 2012, 12:1015-7. CrossRef
    38. Foley AG, Gannon S, Rombach-Mullan N, Prendergast A, Barry C, Cassidy AW, Regan CM: Class I histone deacetylase inhibition ameliorates social cognition and cell adhesion molecule plasticity deficits in a rodent model of autism spectrum disorder. / Neuropharmacology 2012, 63:750-0. CrossRef
    39. El-Ansary A, Al-Ayadhi L: Lipid mediators in plasma of autism spectrum disorders. / Lipids Health Dis 2012, 11:160. CrossRef
    40. Fujisawa K, Fujita A, Ishizaki T, Saito Y, Narumiya S: Identification of the Rho-binding domain of p160ROCK, a Rho-associated coiled-coil containing protein kinase. / J Biol Chem 1996, 271:23022-. CrossRef
    41. Shi J, Zhang YW, Yang Y, Zhang L, Wei L: ROCK1 plays an essential role in the transition from cardiac hypertrophy to failure in mice. / J Mol Cell Cardiol 2010, 49:819-8. CrossRef
    42. Ichinomiya T, Cho S, Higashijima U, Matsumoto S, Maekawa T, Sumikawa K: High-dose fasudil preserves postconditioning against myocardial infarction under hyperglycemia in rats: role of mitochondrial KATP channels. / Cardiovasc Diabetol 2012, 11:28. CrossRef
    43. Wang N, Guan P, Zhang JP, Chang YZ, Gu LJ, Hao FK, Shi ZH, Wang FY, Chu L: Preventive effects of fasudil on adriamycin-induced cardiomyopathy: possible involvement of inhibition of RhoA/ROCK pathway. / Food Chem Toxicol 2011, 49:2975-2. CrossRef
    44. Guan SJ, Ma ZH, Wu YL, Zhang JP, Liang F, Weiss JW, Guo QY, Wang JY, Ji ES, Chu L: Long-term administration of fasudil improves cardiomyopathy in streptozotocin-induced diabetic rats. / Food Chem Toxicol 2012, 50:1874-2. CrossRef
    45. Guo P, Wu C, Masaki T, Mori H, Nishiyama A: Subdose of fasudil suppresses myocardial fibrosis in aldosterone-salt-treated uninephrectomized rats. / Pharmazie 2011, 66:716-.
    46. Bowerman M, Murray LM, Boyer JG, Anderson CL, Kothary R: Fasudil improves survival and promotes skeletal muscle development in a mouse model of spinal muscular atrophy. / BMC Med 2012, 10:24. CrossRef
    47. Capitanio D, Vasso M, Ratti A, Grignaschi G, Volta M, Moriggi M, Daleno C, Bendotti C, Silani V, Gelfi C: Molecular signatures of amyotrophic lateral sclerosis disease progression in hind and forelimb muscles of an SOD1(G93A) mouse model. / Antioxid Redox Signal 2012, 17:1333-0. CrossRef
    48. Mu X, Usas A, Tang Y, Lu A, Wang B, Weiss K, Huard J: RhoA mediates defective stem cell function and heterotopic ossification in dystrophic muscle of mice. / Faseb J 2013.
    49. Mercurio F, Zhu H, Murray BW, Shevchenko A, Bennett BL, Li J, Young DB, Barbosa M, Mann M, Manning A, / et al.: IKK-1 and IKK-2: cytokine-activated IkappaB kinases essential for NF-kappaB activation. / Science 1997, 278:860-. CrossRef
    50. Monici MC, Aguennouz M, Mazzeo A, Messina C, Vita G: Activation of nuclear factor-kappaB in inflammatory myopathies and Duchenne muscular dystrophy. / Neurology 2003, 60:993-. CrossRef
    51. Baghdiguian S, Martin M, Richard I, Pons F, Astier C, Bourg N, Hay RT, Chemaly R, Halaby G, Loiselet J, / et al.: Calpain 3 deficiency is associated with myonuclear apoptosis and profound perturbation of the IkappaB alpha/NF-kappaB pathway in limb-girdle muscular dystrophy type 2A. / Nat Med 1999, 5:503-1. CrossRef
    52. Acharyya S, Villalta SA, Bakkar N, Bupha-Intr T, Janssen PM, Carathers M, Li ZW, Beg AA, Ghosh S, Sahenk Z, / et al.: Interplay of IKK/NF-kappaB signaling in macrophages and myofibers promotes muscle degeneration in Duchenne muscular dystrophy. / J Clin Invest 2007, 117:889-01. CrossRef
    53. Reay DP, Yang M, Watchko JF, Daood M, O'Day TL, Rehman KK, Guttridge DC, Robbins PD, Clemens PR: Systemic delivery of NEMO binding domain/IKKgamma inhibitory peptide to young mdx mice improves dystrophic skeletal muscle histopathology. / Neurobiol Dis 2011, 43:598-08. CrossRef
    54. Tang Y, Reay DP, Salay MN, Mi MY, Clemens PR, Guttridge DC, Robbins PD, Huard J, Wang B: Inhibition of the IKK/NF-kappaB pathway by AAV gene transfer improves muscle regeneration in older mdx mice. / Gene Ther 2010, 17:1476-3. CrossRef
    55. Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, Light Y, McGlinchey S, Michalovich D, Al-Lazikani B, / et al.: ChEMBL: a large-scale bioactivity database for drug discovery. / Nucleic Acids Res 2012, 40:D1100-. CrossRef
  • 作者单位:Ivan Molineris (5)
    Ugo Ala (5)
    Paolo Provero (5)
    Ferdinando Di Cunto (5)

    5. Molecular Biotechnology Centre, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
  • ISSN:1471-2105
文摘
Background The development of new therapies for orphan genetic diseases represents an extremely important medical and social challenge. Drug repositioning, i.e. finding new indications for approved drugs, could be one of the most cost- and time-effective strategies to cope with this problem, at least in a subset of cases. Therefore, many computational approaches based on the analysis of high throughput gene expression data have so far been proposed to reposition available drugs. However, most of these methods require gene expression profiles directly relevant to the pathologic conditions under study, such as those obtained from patient cells and/or from suitable experimental models. In this work we have developed a new approach for drug repositioning, based on identifying known drug targets showing conserved anti-correlated expression profiles with human disease genes, which is completely independent from the availability of ‘ad hoc-gene expression data-sets. Results By analyzing available data, we provide evidence that the genes displaying conserved anti-correlation with drug targets are antagonistically modulated in their expression by treatment with the relevant drugs. We then identified clusters of genes associated to similar phenotypes and showing conserved anticorrelation with drug targets. On this basis, we generated a list of potential candidate drug-disease associations. Importantly, we show that some of the proposed associations are already supported by independent experimental evidence. Conclusions Our results support the hypothesis that the identification of gene clusters showing conserved anticorrelation with drug targets can be an effective method for drug repositioning and provide a wide list of new potential drug-disease associations for experimental validation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700