用户名: 密码: 验证码:
Approaches for the generation of active papain-like cysteine proteases from inclusion bodies of Escherichia coli
详细信息    查看全文
  • 作者:Chunfang Ling (1) (2)
    Junyan Zhang (2)
    Deqiu Lin (1) (2)
    Ailin Tao (2)

    1. School of Life Science
    ; South China Normal University ; 55# Zhongshan Road West ; Tianhe District ; Guangzhou ; 510631 ; People鈥檚 Republic of China
    2. Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology
    ; The State Key Laboratory of Respiratory Disease ; The Second Affiliated Hospital of Guangzhou Medical University ; 250# Changgang Road East ; Guangzhou ; 510260 ; Guangdong Province ; People鈥檚 Republic of China
  • 关键词:Papain ; like cysteine proteases ; Escherichia coli ; Refolding ; Purification ; Activation
  • 刊名:World Journal of Microbiology & Biotechnology
  • 出版年:2015
  • 出版时间:May 2015
  • 年:2015
  • 卷:31
  • 期:5
  • 页码:681-690
  • 全文大小:292 KB
  • 参考文献:1. Ahn, SJ, Seo, JS, Kim, M-S, Jeon, SJ, Kim, NY, Jang, JH (2007) Cloning, site-directed mutagenesis and expression of cathepsin L-like cysteine protease from Uronema marinum (Ciliophora: Scuticociliatida). Mol Biochem Parasitol 156: pp. 191-198 CrossRef
    2. Alessio, KJD, McQueney, MS, Brun, KA, Orsini, MJ, Debouck, CM (1999) Expression in Escherichia coli, refolding, and purification of human procathepsin K, an osteoclast-specific protease. Protein Expr Purif 15: pp. 213-220 CrossRef
    3. Asp, T, Bowra, S, Borg, S, Holm, P (2004) Molecular cloning, functional expression in Escherichia coli and enzymatic characterisation of a cysteine protease from white clover (Trifolium repens). Biochim Biophys Acta 1699: pp. 111-122 CrossRef
    4. Asturias, J, Ibarrola, I, Arilla, M, Vidal, C, Ferrer, A, Gamboa, P (2009) Engineering of major house dust mite allergens Der p 1 and Der p 2 for allergen-specific immunotherapy. Clin Exp Allergy 39: pp. 1088-1098 CrossRef
    5. Best, EA, Stedman, KE, Bozic, CM, Hunter, SW, Vailes, L, Chapman, MD (2000) A recombinant group 1 house dust mite allergen, rDer f 1, with biological activities similar to those of the native allergen. Protein Expr Purif 20: pp. 462-471 CrossRef
    6. Br枚mme D (2001) Papain-like cysteine proteases. Curr Protoc Protein Sci. doi:10.1002/0471140864.ps2102s21
    7. Bromme, D, Nallaseth, F, Turk, B (2004) Production and activation of recombinant papain-like cysteine proteases. Methods 32: pp. 199-206 CrossRef
    8. Caldeira, RL, Gon莽alves, L, Martins, TM, Silveira, H, Novo, C, Ros谩rio, VD (2009) Plasmodium chabaudi: expression of active recombinant chabaupain-1 and localization studies in Anopheles sp. Exp Parasitol 122: pp. 97-105 CrossRef
    9. Calderone, TL, Stevens, RD, Oas, TG (1996) High-level misincorporation of lysine for arginine at AGA codons in a fusion protein expressed in Escherichia coli. J Mol Biol 262: pp. 407-412 CrossRef
    10. Chan, MM, Fong, D (1988) Expression of human cathepsin B protein in Escherichia coli. FEBS Lett 239: pp. 219-222 CrossRef
    11. Chen Y-J, Huang L-W, Chiu H-C, Lin S-C (2003) Temperature responsive polymer-assisted protein refolding. Enzyme Microb Technol 32:120鈥?30
    12. Chen, L, Sun, L (2012) Cathepsin B of Cynoglossus semilaevis: identification, expression, and activity analysis. Comp Biochem Physiol B: Biochem Mol Biol 161: pp. 54-59 CrossRef
    13. Choudhury D, Roy S, Chakrabarti C, Biswas S, Dattagupta JK (2009) Production and recovery of recombinant propapain with high yield. Phytochemistry 70:465鈥?72
    14. Clark, EDB (2001) Protein refolding for industrial processes. Curr Opin Biotechnol 12: pp. 202-207 CrossRef
    15. Clark, EDB, Schwarz, E, Rudolph, R (1999) Inhibition of aggregation side reactions during in vitro protein folding. Methods Enzymol 309: pp. 217-236 CrossRef
    16. Cleland, JL, Hedgepeth, C, Wang, D (1992) Polyethylene glycol enhanced refolding of bovine carbonic anhydrase B. Reaction stoichiometry and refolding model. J Biol Chem 267: pp. 13327-13334
    17. Coutard, B, Danchin, EG, Oubelaid, R, Canard, B, Bignon, C (2012) Single pH buffer refolding screen for protein from inclusion bodies. Protein Expr Purif 82: pp. 352-359 CrossRef
    18. Dahl, SW, Halkier, T, Lauritzen, C, Dolenc, I, Pedersen, J, Turk, V (2001) Human recombinant pro-dipeptidyl peptidase I (cathepsin C) can be activated by cathepsins L and S but not by autocatalytic processing. Biochemistry 40: pp. 1671-1678 CrossRef
    19. Demuth, H (1990) Recent developments in inhibiting cysteine and serine proteases. J Enzyme Inhib 3: pp. 249-278 CrossRef
    20. Dolinar, M, Maganja, DB, Turk, V (1995) Expression of full-length human procathepsin L cDNA in Escherichia coll and refolding of the expression product. Biol Chem Hoppe Seyler 376: pp. 385-388 CrossRef
    21. Dutta, S, Ghosh, R, Dattagupta, JK, Biswas, S (2010) Heterologous expression of a thermostable plant cysteine protease in Escherichia coli both in soluble and insoluble forms. Process Biochem 45: pp. 1307-1312 CrossRef
    22. Eakin, AE, Mills, A, Harth, G, McKerrow, JH, Craik, CS (1992) The sequence, organization, and expression of the major cysteine protease (cruzain) from Trypanosoma cruzi. J Biol Chem 267: pp. 7411-7420
    23. Ejima, D, Ono, K, Tsumoto, K, Arakawa, T, Eto, Y (2006) A novel 鈥渞everse screening鈥?to identify refolding additives for activin-A. Protein Expr Purif 47: pp. 45-51 CrossRef
    24. Gu, Z, Su, Z, Janson, J-C (2001) Urea gradient size-exclusion chromatography enhanced the yield of lysozyme refolding. J Chromatogr A 918: pp. 311-318 CrossRef
    25. Hwang, HS, Chung, H-S (2002) Preparation of active recombinant cathepsin K expressed in bacteria as inclusion body. Protein Expr Purif 25: pp. 541-546 CrossRef
    26. Joo, HS, Koo, KB, Park, KI, Bae, SH, Yun, JW, Chang, CS (2007) Cloning and expression of the cathepsin F-like cysteine protease gene in Eschrichia coli and its characterization. J Microbiol 45: pp. 158-167
    27. Jungbauer, A, Kaar, W (2007) Current status of technical protein refolding. J Biotechnol 128: pp. 587-596 CrossRef
    28. Kim, NY, Ahn, SJ, Lee, AR, Seo, JS, Kim, MS, Kim, JK (2010) Cloning, expression analysis and enzymatic characterization of cathepsin S from olive flounder (Paralichthys olivaceus). Comp Biochem Physiol B: Biochem Mol Biol 157: pp. 238-247 CrossRef
    29. Kopetzki, E, Schumacher, G, Buckel, P (1989) Control of formation of active soluble or inactive insoluble baker鈥檚 yeast 伪-glucosidase PI in Escherichia coli by induction and growth conditions. Mol Gen Genet 216: pp. 149-155 CrossRef
    30. Kopitar, G, Dolinar, M, Strukelj, B, Pungercar, J, Turk, V (1996) Folding and activation of human procathepsin S from inclusion bodies produced in Escherichia coli. Eur J Biochem 236: pp. 558-562 CrossRef
    31. Kramer, G, Paul, A, Kreusch, A, Schuler, S, Wiederanders, B, Schilling, K (2007) Optimized folding and activation of recombinant procathepsin L and S produced in Escherichia coli. Protein Expr Purif 54: pp. 147-156 CrossRef
    32. Kuhelj, R, Dolinar, M, Pungercar, J, Turk, V (1995) The preparation of catalytically active human cathepsin B from its precursor expressed in Escherichia coli in the form of inclusion bodies. Eur J Biochem 229: pp. 533-539 CrossRef
    33. Lecaille, F, Kaleta, J, Br枚mme, D (2002) Human and parasitic papain-like cysteine proteases: their role in physiology and pathology and recent developments in inhibitor design. Chem Rev 102: pp. 4459-4488 CrossRef
    34. Lee, AR, Bak, HJ, Kim, NY, Kim, M-S, Go, H-J, Han, JW (2012) Cloning, heterologous expression, and enzymatic characterization of cathepsin L from starfish (Asterina pectinifera). Biosci Biotechnol Biochem 76: pp. 2342-2346 CrossRef
    35. Leung-Toung, R, Li, W, Tam, T, Karimian, K (2002) Thiol-dependent enzymes and their inhibitors: a review. Curr Med Chem 9: pp. 979-1002 CrossRef
    36. Li, M, Zhang, G, Su, Z (2002) Dual gradient ion-exchange chromatography improved refolding yield of lysozyme. J Chromatogr A 959: pp. 113-120 CrossRef
    37. Li, M, Su, Z-G, Janson, J-C (2004) In vitro protein refolding by chromatographic procedures. Protein Expr Purif 33: pp. 1-10 CrossRef
    38. Liu, H-S, Chang, C-K (2003) Chaperon solvent plug to enhance protein refolding in size exclusion chromatography. Enzyme Microb Technol 33: pp. 424-429 CrossRef
    39. Marquis, R, Ru, Y, Yamashita, D, Oh, H, Yen, J, Thompson, S (1999) Potent dipeptidylketone inhibitors of the cysteine protease cathepsin K. Bioorg Med Chem 7: pp. 581-588 CrossRef
    40. McQueney, MS, Amegadzie, BY, D鈥橝lessio, K, Hanning, CR, McLaughlin, MM, McNulty, DCS (1997) Autocatalytic activation of human cathepsin K. J Biol Chem 272: pp. 13955-13960 CrossRef
    41. Miyaji, T, Murayama, S, Kouzuma, Y, Kimura, N, Kanost, MR, Kramer, KJ (2010) Molecular cloning of a multidomain cysteine protease and protease inhibitor precursor gene from the tobacco hornworm (Manduca sexta) and functional expression of the cathepsin F-like cysteine protease domain. Insect Biochem Mol Biol 40: pp. 835-846 CrossRef
    42. Na, B, Shenai, B, Sijwali, P, Choe, Y, Pandey, K, Singh, A (2004) Identification and biochemical characterization of vivapains, cysteine proteases of the malaria parasite Plasmodium vivax. Biochem J 378: pp. 529-538 CrossRef
    43. Novinec M, Pavsic M, Lenarcic B (2012) A simple and efficient protocol for the production of recombinant cathepsin V and other cysteine cathepsins in soluble form in / Escherichia coli. Protein Expr Purif 82:1鈥?
    44. Prasad, R, Atul, Soni A, Puri, SK, Sijwali, PS (2012) Expression, characterization, and cellular localization of knowpains, papain-like cysteine proteases of the Plasmodium knowlesi malaria parasite. PLoS One 7: pp. e51619 CrossRef
    45. Raines, R (1997) Nature鈥檚 transitory covalent bond. Nat Struct Biol 4: pp. 424-427 CrossRef
    46. Raman B, Ramakrishna T, Rao CM (1996) Refolding of denatured and denatured/reduced lysozyme at high concentrations. J Biol Chem 271:17067鈥?7072
    47. Rawlings ND, Salvesen G (2013) Handbook of proteolytic enzymes. Academic Press, London
    48. Riese, RJ, Mitchell, RN, Villadangos, JA, Shi, G-P, Palmer, JT, Karp, ER (1998) Cathepsin S activity regulates antigen presentation and immunity. J Clin Investig 101: pp. 2351-2363 CrossRef
    49. Roy, S, Dattagupta, JK, Biswas, S (2012) Expression of recombinant human cathepsin K is enhanced by codon optimization. Process Biochem 47: pp. 1944-1947 CrossRef
    50. Rudolph, R, Lilie, H (1996) In vitro folding of inclusion body proteins. FASEB J: Off Publ Fed Am Soc Exp Biol 10: pp. 49-56
    51. Sajid, M, McKerrow, JH (2002) Cysteine proteases of parasitic organisms. Mol Biochem Parasitol 120: pp. 1-21 CrossRef
    52. Santamaria, I, Velasco, G, Pendas, A, Paz, A, Lopez-Otin, C (1999) Molecular cloning and structural and functional characterization of human cathepsin F, a new cysteine proteinase of the papain family with a long propeptide domain. J Biol Chem 274: pp. 13800-13809 CrossRef
    53. Sarduy, ES, Munoz, AC, Trejo, SA, Chavez Planes, MDLA (2012) High-level expression of Falcipain-2 in Escherichia coli by codon optimization and auto-induction. Protein Expr Purif 83: pp. 59-69 CrossRef
    54. Schein, CH, Noteborn, MH (1988) Formation of soluble recombinant proteins in Escherichia coli is favored by lower growth temperature. Nat Biotechnol 6: pp. 291-294 CrossRef
    55. Sharapova, OA, Yurkova, MS, Laurinavichyute, DK, Andronova, SM, Fedorov, AN, Severin, SE (2011) Efficient refolding of a hydrophobic protein with multiple S鈥揝 bonds by on-resin immobilized metal affinity chromatography. J Chromatogr A 1218: pp. 5115-5119 CrossRef
    56. Sijwali, PS, Brinen, LS, Rosenthal, PJ (2001) Systematic optimization of expression and refolding of the Plasmodium falciparum cysteine protease Falcipain-2. Protein Expr Purif 22: pp. 128-134 CrossRef
    57. Sijwali, PS, Shenai, B, Gut, J, Singh, A, Rosenthal, P (2001) Expression and characterization of the Plasmodium falciparum haemoglobinase Falcipain-3. Biochem J 360: pp. 481-489 CrossRef
    58. Sijwali, PS, Shenai, BR, Rosenthal, PJ (2002) Folding of the Plasmodium falciparum cysteine protease Falcipain-2 is mediated by a chaperone-like peptide and not the prodomain. J Biol Chem 277: pp. 14910-14915 CrossRef
    59. Singh, A, Shenai, B, Choe, Y, Gut, J, Sijwali, P, Craik, C (2002) Critical role of amino acid 23 in mediating activity and specificity of vinckepain-2, a papain-family cysteine protease of rodent malaria parasites. Biochem J 368: pp. 273-281 CrossRef
    60. Singh A, Walker KJ, Sijwali PS, Lau AL, Rosenthal PJ (2007) A chimeric cysteine protease of Plasmodium berghei engineered to resemble the Plasmodium falciparum protease falcipain-2. Protein Eng Des Sel 20:171鈥?77
    61. Smith, SM, Gottesman, MM (1989) Activity and deletion analysis of recombinant human cathepsin L expressed in Escherichia coli. J Biol Chem 264: pp. 20487-20495
    62. Takahashi, K, Takai, T, Yasuhara, T, Yuuki, T, Ohtake, Y, Yokota, T (2000) Production of enzymatically and immunologically active Der f 1 in Escherichia coli. Int Arch Allergy Immunol 122: pp. 108-114 CrossRef
    63. Takai, T, Mineki, R, Nakazawa, T, Takaoka, M, Yasueda, H, Murayama, K (2002) Maturation of the activities of recombinant mite allergens Der p 1 and Der f 1, and its implication in the blockade of proteolytic activity. FEBS Lett 531: pp. 265-272 CrossRef
    64. Takaomi, Y, Toshiro, T, Toshifumi, Y, Hirokazu, O, Yasushi, O (2001) Cloning and expression of cDNA encoding the complete prepro-form of an isoform of Der f 1, the major group 1 allergen from house dust mite Dermatophagoides farinae. Biosci Biotechnol Biochem 65: pp. 563-569 CrossRef
    65. Tobbell, D, Middleton, B, Raines, S, Needham, M, Taylor, I, Beveridge, J (2002) Identification of in vitro folding conditions for procathepsin S and cathepsin S using fractional factorial screens. Protein Expr Purif 24: pp. 242-254 CrossRef
    66. Tsumoto, K, Ejima, D, Kumagai, I, Arakawa, T (2003) Practical considerations in refolding proteins from inclusion bodies. Protein Expr Purif 28: pp. 1-8 CrossRef
    67. Vallejo, LF, Rinas, U (2004) Strategies for the recovery of active proteins through refolding of bacterial inclusion body proteins. Microb Cell Fact 3: pp. 11-22 CrossRef
    68. Velasco, G, Ferrando, AA, Puente, XS, Shchez, LM, L贸pez-Ot铆n, C (1994) Human cathepsin O: molecular cloning from a breast carcinoma, production of the active enzyme in Escherichia coli, and expression analysis in human tissues. J Biol Chem 269: pp. 27136-27142
    69. Vernet T, Tessier DC, Laliberte F, Dignard D, Thomas DY (1989) The expression in / Escherichia coli of a synthetic gene coding for the precursor of papain is prevented by its own putative signal sequence. Gene 77:229鈥?36
    70. Vincentelli, R, Canaan, S, Campanacci, V, Valencia, C, Maurin, D, Frassinetti, F (2004) High-throughput automated refolding screening of inclusion bodies. Protein Sci: A Publ Protein Soc 13: pp. 2782-2792 CrossRef
    71. Werner, MH, Clore, GM, Gronenborn, AM, Kondoh, A, Fisher, RJ (1994) Refolding proteins by gel filtration chromatography. FEBS Lett 345: pp. 125-130 CrossRef
    72. West, S, Chaudhuri, J, Howell, J (1998) Improved protein refolding using hollow-fibre membrane dialysis. Biotechnol Bioeng 57: pp. 590-599 CrossRef
    73. Wetlaufer, DB, Branca, PA, Chen, G-X (1987) The oxidative folding of proteins by disulfide plus thiol does not correlate with redox potential. Protein Eng 1: pp. 141-146 CrossRef
    74. Wu, J, Yang, Y, Watson, JT (1998) Trapping of intermediates during the refolding of recombinant human epidermal growth factor(hEGF) by cyanylation, and susbsequent structural elucidation by mass spectrometry. Protein Sci: A Publ Protein Soc 7: pp. 1017-1028 CrossRef
    75. Yamamoto, Y, Watabe, S, Kageyama, T, Takahashi, SY (1999) Proregion of Bombyx mori cysteine proteinase functions as an intramolecular chaperone to promote proper folding of the mature enzyme. Arch Insect Biochem Physiol 42: pp. 167-178 CrossRef
    76. Yamashita, D, Dodds, R (2000) Cathepsin K and the design of inhibitors of cathepsin K. Curr Pharm Des 6: pp. 1-24 CrossRef
    77. Yasuhara, T, Takai, T, Yuuki, T, Okudaira, H, Okumura, Y (2001) Biologically active recombinant forms of a major house dust mite group 1 allergen Der f 1 with full activities of both cysteine protease and IgE binding. Clin Exp Allergy: J Br Soc Allergy Clin Immunol 31: pp. 116-124 CrossRef
    78. Zhang, W, Xiao, W, Wei, H, Zhang, J, Tian, Z (2006) mRNA secondary structure at start AUG codon is a key limiting factor for human protein expression in Escherichia coli. Biochem Biophys Res Commun 349: pp. 69-78 CrossRef
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Applied Microbiology
    Biotechnology
    Biochemistry
    Environmental Biotechnology
    Microbiology
  • 出版者:Springer Netherlands
  • ISSN:1573-0972
文摘
Papain-like cysteine proteases are widely expressed, fulfill specific functions in extracellular matrix turnover, antigen presentation and processing events, and may represent viable drug targets for major diseases. In depth and rigorous studies of the potential for these proteins to be targets for drug development require sufficient amounts of protease protein that can be used for both experimental and therapeutic purposes. Escherichia coli was widely used to express papain-like cysteine proteases, but most of those proteases are produced in insoluble inclusion bodies that need solubilizing, refolding, purifying and activating. Refolding is the most critical step in the process of generating active cysteine proteases and the current approaches to refolding include dialysis, dilution and chromatography. Purification is mainly achieved by various column chromatography. Finally, the attained refolded proteases are examined regarding their protease structures and activities.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700