用户名: 密码: 验证码:
Stability Characterization of a Polysorbate 80-Dimethyl Trisulfide Formulation, a Cyanide Antidote Candidate
详细信息    查看全文
  • 作者:Craig M. Bartling ; Jon C. Andre ; Carrie A. Howland ; Mark E. Hester…
  • 刊名:Drugs in R&D
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:16
  • 期:1
  • 页码:109-127
  • 全文大小:1,862 KB
  • 刊物主题:Pharmacotherapy; Pharmacology/Toxicology; Internal Medicine;
  • 出版者:Springer International Publishing
  • ISSN:1179-6901
文摘
Novel cyanide countermeasures are needed for cases of a mass-exposure cyanide emergency. A lead candidate compound is dimethyl trisulfide (DMTS), which acts as a sulfur donor for rhodanese, thereby assisting the conversion of cyanide into thiocyanate. DMTS is a safe compound for consumption and, in a 15 % polysorbate 80 (DMTS-PS80) formulation, has demonstrated good efficacy against cyanide poisoning in several animal models. We performed a stability study that investigated the effect of temperature, location of formulation preparation, and pH under buffered conditions. We found that while the stability of the DMTS component was fairly independent of which laboratory prepared the formulation, the concentration of DMTS in the formulation was reduced 36–58 % over the course of 29 weeks when stored at room temperature. This loss typically increased with increasing temperatures, although we did not find statistical differences between the stability at different storage temperatures in all formulations. Further, we found that addition of a light buffer negatively impacted the stability, whereas the pH of that buffer did not impact stability. We investigated the factors behind the reduction of DMTS over time using various techniques, and we suggest that the instability of the formulation is governed at least partially by precipitation and evaporation, although a combination of factors is likely involved.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700