用户名: 密码: 验证码:
Ectopic Expression of a Proteinase Inhibitor I4 (MtPiI4) Gene from Medicago truncatula Confers Plant Resistance to Pseudomonas syringae pv. Tomato DC3000
详细信息    查看全文
  • 作者:Di Sun ; Jian Chen ; Zhao Sheng Zhou ; Can Can Zhu…
  • 关键词:Medicago truncatula ; MtPiI4 ; Methyl jasmonate ; Proteinase inhibitor ; Pseudomonas syringae pv.tomato DC3000
  • 刊名:Plant Molecular Biology Reporter
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:33
  • 期:6
  • 页码:1686-1696
  • 全文大小:1,689 KB
  • 参考文献:Alvarez-Alfageme F, Maharramov J, Carrillo L, Vandenabeele S, Vercammen D, Van Breusegem F, Smagghe G (2011) Potential use of a serpin from Arabidopsis for pest control. PLoS ONE 6:e20278PubMed PubMedCentral CrossRef
    Avanci NC, Luche DD, Goldman GH, Goldman MHS (2010) Jasmonates are phytohormones with multiple functions, including plant defense and reproduction. Genet Mol Res 9:484–505PubMed CrossRef
    Belenghi B, Romero-Puertas MC, Vercammen D, Brackenier A, Inzé D, Delledonne M, Van Breusegem F (2007) Metacaspase activity of Arabidopsis thaliana is regulated by S-nitrosylation of a critical cysteine residue. J Biol Chem 282:1352–1358PubMed CrossRef
    Bollhöner B, Zhang B, Stael S, Denancé N, Overmyer K, Goffner D, Van Breusegem F, Tuominen H (2013) Post mortem function of AtMC9 in xylem vessel elements. New Phytol 200:498–510PubMed CrossRef
    Brooks DM, Bender CL, Kunkel BN (2005) The Pseudomonas syringae phytotoxin coronatine promotes virulence by overcoming salicylic acid-dependent defences in Arabidopsis thaliana. Mol Plant Pathol 6:629–639PubMed CrossRef
    Brown RL, Kazan K, McGrath KC, Maclean DJ, Manners JM (2003) A role for the GCC-box in jasmonate-mediated activation of the PDF1.2 gene of Arabidopsis. Plant Physiol 132:1020–1032PubMed PubMedCentral CrossRef
    Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743PubMed CrossRef
    Coll NS, Epple P, Dangl JL (2011) Programmed cell death in the plant immune system. Cell Death Differ 18:1247–1256PubMed PubMedCentral CrossRef
    Ding Y, Kalo P, Yendrek C, Sun J, Liang Y, Marsh JF, Harris JM, Oldroyd GED (2008) Abscisic acid coordinates nod factor and cytokinin signaling during the regulation of nodulation in Medicago truncatula. Plant Cell 20:2681–2695PubMed PubMedCentral CrossRef
    Dunse KM, Stevens JA, Lay FT, Gaspar YM, Heath RL, Anderson MA (2010) Coexpression of potato type I and II proteinase inhibitors gives cotton plants protection against insect damage in the field. Proc Natl Acad Sci USA 107:15011–15015PubMed PubMedCentral CrossRef
    Fluhr R, Lampl N, Roberts TH (2012) Serpin protease inhibitors in plant biology. Physiol Plant 145:95–102PubMed CrossRef
    Gerber PA, Hevezi P, Buhren BA, Martinez C, Schrumpf H, Gasis M, Grether-Beck S, Krutmann J, Homey B, Zlotnik A (2013) Systematic identification and characterization of novel human skin-associated genes encoding membrane and secreted proteins. PLoS ONE 8:e63949PubMed PubMedCentral CrossRef
    Hartl M, Giri AP, Kaur H, Baldwin IT (2010) Serine protease inhibitors specifically defend Solanum nigrum against generalist herbivores but do not influence plant growth and development. Plant Cell 22:4158–4175PubMed PubMedCentral CrossRef
    He P, Shan L, Lin NC, Martin GB, Kemmerling B, Nurnberger T, Sheen J (2006) Specific bacterial suppressors of MAMP signaling upstream of MAPKKK in Arabidopsis innate immunity. Cell 125:563–575PubMed CrossRef
    Hu LB, Shi ZQ, Zhang T, Yang ZM (2007) Fengycin antibiotics isolated from B-FS01 culture inhibit the growth of Fusarium moniliforme Sheldon ATCC 38932. FEMS Microbiol Lett 272:91–98PubMed CrossRef
    Hu LB, Zhang T, Yang ZM, Zhou W, Shi ZQ (2009) Inhibition of fengycins on the production of fumonisin B1 from Fusarium verticillioides. Lett Appl Microbiol 48:84–89PubMed CrossRef
    John AG (2011) Prospects for using proteinase inhibitors to protect transgenic plants against attack by herbivorous insects. Curr Protein Pept Sci 12:409–416CrossRef
    Jongsma MA, Beekwilder J (2011) Co-evolution of insect proteases and plant protease inhibitors. Curr Protein Pept Sci 12:437–447PubMed CrossRef
    Justesen J, Hartmann R, Kjeldgaard NO (2000) Gene structure and function of the 2'-5'-oligoadenylate synthetase family. Cell Mol Life Sci 57:1593–1612PubMed CrossRef
    Katsir L, Schilmiller AL, Staswick PE, He SY, Howe GA (2008) COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. Proc Natl Acad Sci USA 105:7100–7105PubMed PubMedCentral CrossRef
    Keith RC, Keith LM, Hernandez-Guzman G, Uppalapati SR, Bender CL (2003) Alginate gene expression by Pseudomonas syringae pv. tomato DC3000 in host and non-host plants. Microbiology 149:1127–1138PubMed CrossRef
    Kim JY, Park SC, Hwang I, Cheong H, Nah JW, Hahm KS, Park Y (2009) Protease inhibitors from plants with antimicrobial activity. Int J Mol Sci 10:2860–2872PubMed PubMedCentral CrossRef
    Kim MG, da Cunha L, McFall AJ, Belkhadir Y, DebRoy S, Dangl JL, Mackey D (2005) Two Pseudomonas syringae type III effectors inhibit RIN4-regulated basal defense in Arabidopsis. Cell 121:749–759PubMed CrossRef
    Kim S-M, Bae C, Oh S-K, Choi D (2013) A pepper (Capsicum annuum L.) metacaspase 9 (Camc9) plays a role in pathogen-induced cell death in plants. Mol Plant Pathol 14:557–566PubMed CrossRef
    Koiwa H, Bressan RA, Hasegawa PM (1997) Regulation of protease inhibitors and plant defense. Trends Plant Sci 2:379–384CrossRef
    Lampl N, Alkan N, Davydov O, Fluhr R (2013) Set-point control of RD21 protease activity by AtSerpin1 controls cell death in Arabidopsis. Plant J 74:498–510PubMed CrossRef
    Lampl N, Budai-Hadrian O, Davydov O, Joss TV, Harrop SJ, Curmi PM, Roberts TH, Fluhr R (2010) Arabidopsis AtSerpin1, crystal structure and in vivo interaction with its target protease RESPONSIVE TO DESICCATION-21 (RD21). J Biol Chem 285:13550–13560PubMed PubMedCentral CrossRef
    Laurie-Berry N, Joardar V, Street IH, Kunkel BN (2006) The Arabidopsis thaliana JASMONATE INSENSITIVE 1 gene is required for suppression of salicylic acid-dependent defenses during infection by Pseudomonas syringae. Mol Plant Microbe Interact 19:789–800PubMed CrossRef
    Law RH, Zhang Q, McGowan S, Buckle AM, Silverman GA, Wong W, Rosado CJ, Langendorf CG, Pike RN, Bird PI, Whisstock JC (2006) An overview of the serpin superfamily. Genome Biol 7:216PubMed PubMedCentral CrossRef
    Lee S, Stewart S, Nagtegaal I, Luo J, Wu Y, Colditz G, Medina D, Allred DC (2012) Differentially expressed genes regulating the progression of ductal carcinoma in situ to invasive breast cancer. Cancer Res 72:4574–4586PubMed PubMedCentral CrossRef
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using Real-Time Quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408PubMed CrossRef
    Lomate PR, Hivrale VK (2012) Wound and methyl jasmonate induced pigeon pea defensive proteinase inhibitor has potency to inhibit insect digestive proteinases. Plant Physiol Biochem 57:193–199PubMed CrossRef
    Luna E, Pastor V, Robert J, Flors V, Mauch-Mani B, Ton J (2010) Callose Deposition: A Multifaceted Plant Defense Response. Mol Plant-Microbe Interact 24:183–193CrossRef
    McDowell JM (2011) Plant science-Beleaguered immunity. Science 334:1354–1355PubMed CrossRef
    Mosolov VV, Valueva TA (2008) Proteinase inhibitors in plant biotechnology: a review. Appl Biochem Microbiol 44:233–240CrossRef
    Okada N, Yamamoto T, Watanabe M, Yoshimura Y, Obana E, Yamazaki N, Kawazoe K, Shinohara Y, Minakuchi K (2011) Identification of TMEM45B as a protein clearly showing thermal aggregation in SDS–PAGE gels and dissection of its amino acid sequence responsible for this aggregation. Protein Expr Purif 77:118–123PubMed CrossRef
    Pearce G, Ryan C, Liljegren D (1988) Proteinase inhibitors I and II in fruit of wild tomato species: transient components of a mechanism for defense and seed dispersal. Planta 175:527–531PubMed CrossRef
    Petersen M, Brodersen P, Naested H, Andreasson E, Lindhart U, Johansen B, Nielsen HB, Lacy M, Austin MJ, Parker JE, Sharma SB, Klessig DF, Martienssen R, Mattsson O, Jensen AB, Mundy J (2000) Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance. Cell 103:1111–1120PubMed CrossRef
    Pieterse CM, Leon-Reyes A, Van der Ent S, Van Wees SC (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:308–316PubMed CrossRef
    Roberts T, Hejgaard J (2008) Serpins in plants and green algae. Funct Integr Genomics 8:1–27PubMed CrossRef
    Ryan CA (1989) Proteinase inhibitor gene families: Strategies for transformation to improve plant defenses against herbivores. BioEssays 10:20–24PubMed CrossRef
    Schlüter U, Benchabane M, Munger A, Kiggundu A, Vorster J, Goulet M-C, Cloutier C, Michaud D (2010) Recombinant protease inhibitors for herbivore pest control: a multitrophic perspective. J Exp Bot 61:4169–4183PubMed CrossRef
    Shindo T, Misas-Villamil JC, Hörger AC, Song J, van der Hoorn RAL (2012) A role in immunity for Arabidopsis cysteine protease RD21, the ortholog of the tomato immune protease C14. PLoS ONE 7:e29317PubMed PubMedCentral CrossRef
    Song JB, Huang SQ, Dalmay T, Yang ZM (2012) Regulation of leaf morphology by microRNA394 and its target LEAF CURLING RESPONSIVENESS. Plant Cell Physiol 53:1283–1294PubMed CrossRef
    Spoel SH, Dong X (2012) How do plants achieve immunity? Defence without specialized immune cells. Nat Rev Immunol 12:89–100PubMed CrossRef
    Spoel SH, Koornneef A, Claessens SMC, Korzelius JP, Van Pelt JA, Mueller MJ, Buchala AJ, Métraux J-P, Brown R, Kazan K, Van Loon LC, Dong X, Pieterse CMJ (2003) NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15:760–770PubMed PubMedCentral CrossRef
    Taj G, Agarwal P, Grant M, Kumar A (2010) MAPK machinery in plants: recognition and response to different stresses through multiple signal transduction pathways. Plant Signal Behav 5:1370–1378PubMed PubMedCentral CrossRef
    van der Linde K, Hemetsberger C, Kastner C, Kaschani F, van der Hoorn RA, Kumlehn J, Doehlemann G (2012) A maize cystatin suppresses host immunity by inhibiting apoplastic cysteine proteases. Plant Cell 24:1285–1300PubMed PubMedCentral CrossRef
    Vercammen D, Belenghi B, van de Cotte B, Beunens T, Gavigan J-A, De Rycke R, Brackenier A, Inzé D, Harris JL, Van Breusegem F (2006) Serpin1 of Arabidopsis thaliana is a suicide inhibitor for metacaspase 9. J Mol Biol 364:625–636PubMed CrossRef
    Vlot AC, Dempsey DMA, Klessig DF (2009) Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47:177–206PubMed CrossRef
    Yoshimoto K, Jikumaru Y, Kamiya Y, Kusano M, Consonni C, Panstruga R, Ohsumi Y, Shirasu K (2009) Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. Plant Cell 21:2914–2927PubMed PubMedCentral CrossRef
    Zhang X, Liu S, Takano T (2008) Two cysteine proteinase inhibitors from Arabidopsis thaliana, AtCYSa and AtCYSb, increasing the salt, drought, oxidation and cold tolerance. Plant Mol Biol 68:131–143PubMed CrossRef
    Zheng XY, Spivey NW, Zeng W, Liu PP, Fu ZQ, Klessig DF, He SY, Dong X (2012) Coronatine promotes Pseudomonas syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid accumulation. Cell Host Microbe 11:587–596PubMed PubMedCentral CrossRef
    Zhou ZS, Huang SQ, Yang ZM (2008) Bioinformatic identification and expression analysis of new microRNAs from Medicago truncatula. Biochem Biophys Res Commun 374:538–542PubMed CrossRef
    Zhou ZS, Yang SN, Li H, Zhu CC, Liu ZP, Yang ZM (2013) Molecular dissection of mercury-responsive transcriptome and sense/antisense genes in Medicago truncatula. J Hazard Mater 252–253:123–131PubMed CrossRef
    Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JDG, Felix G, Boller T (2004) Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428:764–767PubMed CrossRef
  • 作者单位:Di Sun (1)
    Jian Chen (2)
    Zhao Sheng Zhou (3)
    Can Can Zhu (1)
    Liang Bin Hu (2)
    Lei Wang (1)
    Lu Yang (1)
    Zhi Min Yang (1)

    1. Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095, China
    2. Institute of Food Safety and Quality, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
    3. Jiangsu Province Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Sciences
    Plant Physiology
  • 出版者:Springer Netherlands
  • ISSN:1572-9818
文摘
Proteinase inhibitors (PIs) play an important role in plant responses to biotic and environmental stimuli, but little is known about the role of PIs in mediating plant immune responses to microbial infection. In this study, a gene named proteinase inhibitor I4 (MtPiI4) was isolated from Medicago truncatula and characterized as a serpin family gene with a typically conserved DUF716 domain. MtPiI4 was differentially expressed in seed, root, leaf, stem and flower tissues. Expression of MtPiI4 was induced by inoculation with a typical bacterial pathogen Pseudomonas syringae pv. tomato DC3000 strain (Pst DC3000). It was also up-regulated by methyl jasmonate (MeJA) treatment. To identify its function in regulating plant immunity against Pst DC3000, we constructed transgenic Arabidopsis plants over-expressing MtPiI4. Compared to wild type, 35S::MtPiI4 plants showed enhanced resistance to Pst DC3000. Expression of JA biosynthetic and responsive genes such as LOX2, PDF1.2, and VSP1 was depressed in 35S::MtPiI4 plants as compared to wild type, suggesting that the JA signaling response was attenuated in 35S::MtPiI4 plants upon Pst DC3000 exposure. Furthermore, over-expression of MtPiI4 led to up-regulation of NPR1 (nonexpressor of pathogenesis-related gene 1—a negative regulator of JA signaling) and down-regulation of MAPK4 (mitogen-activated protein kinase4—a positive regulator of JA signaling). These results indicate that MtPiI4 regulation of plant resistance to Pst DC3000 is involved in the JA signaling transduction pathway. Keywords Medicago truncatula MtPiI4 Methyl jasmonate Proteinase inhibitor Pseudomonas syringae pv.tomato DC3000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700