用户名: 密码: 验证码:
Macroscopic equations for bacterial chemotaxis: integration of detailed biochemistry of cell signaling
详细信息    查看全文
  • 作者:Chuan Xue
  • 关键词:Multiscale analysis ; Bacterial chemotaxis ; Cell signaling ; Keller–Segel ; Velocity jump process ; 92B05 ; 92C17 ; 92D25 ; 35Q80 ; 41A60 ; 60J75
  • 刊名:Journal of Mathematical Biology
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:70
  • 期:1-2
  • 页码:1-44
  • 全文大小:2,460 KB
  • 参考文献:1. Adler J (1966) Chemotaxis in bacteria. Science 153:708-16 CrossRef
    2. Armitage JP, Pitta TP, Vigeant MA, Packer HL, Ford RM (1999) Transformations in flagellar structure of / Rhodobacter sphaeroides and possible relationship to changes in swimming speed. J Bacteriol 181(16):4825-833
    3. Aminzare Z, Sontag ED (2013) Remarks on a population-level model of chemotaxis: advection-diffusion approximation and simulations. arXiv:1302.2605 (preprint)
    4. Berg HC (1975) How bacteria swim. Sci Am 233:36-4 CrossRef
    5. Berg HC (1983) Random walks in biology. Princeton University Press, Princeton
    6. Berg HC (2000) Motile behavior of bacteria. Phys Today 53(1):24-9 CrossRef
    7. Berg HC, Brown D (1972) Chemotaxis in / Escherichia coli analyzed by three-dimensional tracking. Nature 239:502-07 CrossRef
    8. Bray D, Levin MD, Lipkow K (2007) The chemotactic behavior of computer-based surrogate bacteria. Curr Biol 17(1):12-9 CrossRef
    9. Briegel A, Li X, Bilwes AM, Hughes KT, Jensen GJ, Crane BR (2012) Bacterial chemoreceptor arrays are hexagonally packed trimers of receptor dimers networked by rings of kinase and coupling proteins. Proc Natl Acad Sci USA 109(10):3766-771 CrossRef
    10. Budrene EO, Berg HC (1991) Complex patterns formed by motile cells of / Escherichia coli. Nature 349(6310):630-33 CrossRef
    11. Budrene EO, Berg HC (1995) Dynamics of formation of symmetrical patterns by chemotactic bacteria. Nature 376(6535):49-3 CrossRef
    12. Butler SM, Camilli A (2004) Both chemotaxis and net motility greatly influence the infectivity of / Vibrio cholerae. Proc Natl Acad Sci USA 101(14):5018-023. doi:10.1073/pnas.0308052101 CrossRef
    13. Chen KC, Cummings PT, Ford RM (1998) Perturbation expansion of alt’s cell balance equations reduces to Segel’s one-dimensional equations for shallow chemoattractant gradients. SIAM J Appl Math 59(1):35-7 CrossRef
    14. Cluzel P, Surette M, Leibler S (2000) An ultrasensitive bacterial motor revealed by monitoring signaling proteins in single cells. Science 287:1652-655 CrossRef
    15. Dallon JC, Othmer HG (1997) A discrete cell model with adaptive signalling for aggregation of / Dictyostelium discoideum. Philos Trans R Soc Lond B Biol Sci 352(1351):391-17 CrossRef
    16. Duffy KJ, Ford RM (1997) Turn angle and run time distributions characterize swimming behavior for / Pseudomonas putida. J Bacteriol 179(4):1428-430
    17. Erban R, Othmer HG (2004) From individual to collective behavior in bacterial chemotaxis. SIAM J Appl Math 65(2):361-91 CrossRef
    18. Erban R, Othmer H (2005) From signal transduction to spatial pattern formation in / E. coli: a paradigm for multiscale modeling in biology. Multiscale Model Simul 3(2):362-94
    19. Franz B, Erban R (2013) Hybrid modelling of individual movement and collective behaviour. In: Dispersal, individual movement and spatial ecology. Springer, Berlin, pp 129-57
    20. Franz B, Xue C, Painter K, Erban R (2013) Travelling waves in hybrid chemotaxis models. Bull Math Biol. doi:10.1007/s11538-013-9924-4
    21. Friedl P, Gilmour D (2009) Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 10(7):445-57. doi:10.1038/nrm2720
文摘
Chemotaxis of single cells has been extensively studied and a great deal on intracellular signaling and cell movement is known. However, systematic methods to embed such information into continuum PDE models for cell population dynamics are still in their infancy. In this paper, we consider chemotaxis of run-and-tumble bacteria and derive continuum models that take into account of the detailed biochemistry of intracellular signaling. We analytically show that the macroscopic bacterial density can be approximated by the Patlak–Keller–Segel equation in response to signals that change slowly in space and time. We derive, for the first time, general formulas that represent the chemotactic sensitivity in terms of detailed descriptions of single-cell signaling dynamics in arbitrary space dimensions. These general formulas are useful in explaining relations of single cell behavior and population dynamics. As an example, we apply the theory to chemotaxis of bacterium Escherichia coli and show how the structure and kinetics of the intracellular signaling network determine the sensing properties of E. coli? populations. Numerical comparison of the derived PDEs and the underlying cell-based models show quantitative agreements for signals that change slowly, and qualitative agreements for signals that change extremely fast. The general theory we develop here is readily applicable to chemotaxis of other run-and-tumble bacteria, or collective behavior of other individuals that move using a similar strategy.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700